메뉴 건너뛰기




Volumn 39, Issue 12, 2006, Pages 2450-2463

Classification of gene-expression data: The manifold-based metric learning way

Author keywords

Gene expression; Manifold learning; Metric learning; Nearest neighbor

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DATABASE SYSTEMS; LEARNING SYSTEMS; STATISTICAL METHODS;

EID: 33748430616     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2006.05.026     Document Type: Article
Times cited : (22)

References (44)
  • 3
    • 0035076190 scopus 로고    scopus 로고
    • Small sample issues for microarray-based classification
    • Dougherty E.R. Small sample issues for microarray-based classification. Comparative Functional Genomics 2 (2001) 28-34
    • (2001) Comparative Functional Genomics , vol.2 , pp. 28-34
    • Dougherty, E.R.1
  • 6
    • 25444446813 scopus 로고    scopus 로고
    • Evaluation of normalization methods for cdna microarray data by k-nn classification
    • Wu W., Xing E., Mian I., and Bissell M. Evaluation of normalization methods for cdna microarray data by k-nn classification. BMC Bioinformatics 6 191 (2005) 1-21
    • (2005) BMC Bioinformatics , vol.6 , Issue.191 , pp. 1-21
    • Wu, W.1    Xing, E.2    Mian, I.3    Bissell, M.4
  • 7
    • 0001845324 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., and Hart P. Nearest neighbor pattern classification. Ann. Statist. 13 (1967) 57-67
    • (1967) Ann. Statist. , vol.13 , pp. 57-67
    • Cover, T.1    Hart, P.2
  • 8
    • 84994684889 scopus 로고    scopus 로고
    • S. Salzberg, Distance metrics for instance-based Learning, Lecture Notes in Computer Science, vol. 542, 1991, Springer, Berlin, pp. 399-408.
  • 9
    • 1942517347 scopus 로고    scopus 로고
    • A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall, Learning distance functions using equivalence relations, in: Proceeding of the 20th International Conference on Machine Learning (ICML), 2003, pp. 11-18.
  • 10
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • Thrun S., Saul L.K., and Schölkopf B. (Eds), MIT Press, Cambridge, MA
    • Schultz M., and Joachims T. Learning a distance metric from relative comparisons. In: Thrun S., Saul L.K., and Schölkopf B. (Eds). Advances in Neural Information Processing Systems (NIPS) (2004), MIT Press, Cambridge, MA 41-48
    • (2004) Advances in Neural Information Processing Systems (NIPS) , pp. 41-48
    • Schultz, M.1    Joachims, T.2
  • 11
    • 84880784532 scopus 로고    scopus 로고
    • Z. Zhang, J. Kwok, D.-Y. Yeung, Parametric distance metric learning with label information, in: Proceeding of the 18th International Joint Conference on Artificial Intelligence (IJCAI), 2003, pp. 1450-1452.
  • 12
    • 0001020875 scopus 로고    scopus 로고
    • Performance evaluation of the nearest feature line method in image classification and retrieval
    • Li S., Chan K., and Wang C. Performance evaluation of the nearest feature line method in image classification and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 22 11 (2000) 1335-1349
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.11 , pp. 1335-1349
    • Li, S.1    Chan, K.2    Wang, C.3
  • 13
    • 0033096854 scopus 로고    scopus 로고
    • Face recognition using the nearest feature line method
    • Li S., and Lu J. Face recognition using the nearest feature line method. IEEE Trans. Neural Networks 10 2 (1999) 439-443
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.2 , pp. 439-443
    • Li, S.1    Lu, J.2
  • 14
    • 84898980366 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA
    • Vincent P., and Bengio Y. K-local hyperplane and convex distance nearest neighbor algorithms. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems (NIPS) vol. 14 (2002), MIT Press, Cambridge, MA 985-992
    • (2002) Advances in Neural Information Processing Systems (NIPS) , vol.14 , pp. 985-992
    • Vincent, P.1    Bengio, Y.2
  • 15
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a 55 new transformation distance
    • Hanson S.J., Cowan J.D., and Giles C.L. (Eds), Morgan Kaufmann Press, Los Altos, CA
    • Simard P., LeCun Y., and Denker J. Efficient pattern recognition using a 55 new transformation distance. In: Hanson S.J., Cowan J.D., and Giles C.L. (Eds). Advances in Neural Information Processing Systems (NIPS) 57 vol. 5 (1993), Morgan Kaufmann Press, Los Altos, CA 50-58
    • (1993) Advances in Neural Information Processing Systems (NIPS) , vol.57 5 , pp. 50-58
    • Simard, P.1    LeCun, Y.2    Denker, J.3
  • 16
    • 0034467942 scopus 로고    scopus 로고
    • Transformation invariance in pattern recognition ctangent distance and tangent propagation
    • Simard P., LeCun Y., Denker J.S., and Victorri B. Transformation invariance in pattern recognition ctangent distance and tangent propagation. Int. J. Imaging System Technol. 11 3 (2001) 181-194
    • (2001) Int. J. Imaging System Technol. , vol.11 , Issue.3 , pp. 181-194
    • Simard, P.1    LeCun, Y.2    Denker, J.S.3    Victorri, B.4
  • 17
    • 84885879587 scopus 로고
    • Learning prototype models for tangent distance
    • Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press, Cambridge, MA
    • Hastie T., Simard P., and Saeckinger E. Learning prototype models for tangent distance. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Advances in Neural Information Processing Systems (NIPS) vol. 7 (1995), MIT Press, Cambridge, MA 999-1006
    • (1995) Advances in Neural Information Processing Systems (NIPS) , vol.7 , pp. 999-1006
    • Hastie, T.1    Simard, P.2    Saeckinger, E.3
  • 18
    • 33748430887 scopus 로고    scopus 로고
    • O. Okun, Protein fold recognition with k-local hyperplane distance nearest neighbor algorithm, in: Proceedings of the Second European Workshop on Data Mining and Text Mining for Bioinformatics, Pisa, Italy, 2004, pp. 51-57.
  • 21
    • 14344265533 scopus 로고    scopus 로고
    • J. Lee, J. Wang, C. Zhang, Z. Bian, Probabilistic tangent subspace: a unified view, in: Proceeding of the 21st International Conference on Machine Learning (ICML), 2004, pp. 528-535.
  • 22
    • 0000324990 scopus 로고    scopus 로고
    • An alternative perspective on adaptive independent component analysis algorithms
    • Girolami M. An alternative perspective on adaptive independent component analysis algorithms. Neural Comput. 10 8 (1998) 2103-2114
    • (1998) Neural Comput. , vol.10 , Issue.8 , pp. 2103-2114
    • Girolami, M.1
  • 23
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R., Freund Y., Bartlett P., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26 5 (1998) 1651-1686
    • (1998) Ann. Statist. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 24
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to Monte Carlo methods
    • Jordan M.I. (Ed), Kluwer Academic Press, Dordrecht
    • MacKay D.J.C. Introduction to Monte Carlo methods. In: Jordan M.I. (Ed). Learning in Graphical Models (1998), Kluwer Academic Press, Dordrecht 175-204
    • (1998) Learning in Graphical Models , pp. 175-204
    • MacKay, D.J.C.1
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learning 45 (2001) 5-32
    • (2001) Mach. Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 27
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 8 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 28
    • 33748423307 scopus 로고    scopus 로고
    • S.D. Bay, Combining nearest neighbor classifiers through multiple feature subsets, in: Proceedings of the 15th International Conference on Machine Learning (ICML), 1998, pp. 37-45.
  • 29
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon A., Barkai N., Notterman D., Gish K., Ybarra S., Mack D., and Levine A. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96 (1999) 6745-6750
    • (1999) Proc. Natl. Acad. Sci. , vol.96 , pp. 6745-6750
    • Alon, A.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 33
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machines classification and validation of cancer tissue samples using microarray expression data
    • Furey T., Cristianini N., Duffy N., Bednarski D., Schummer M., and Haussler D. Support vector machines classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906-914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.4    Schummer, M.5    Haussler, D.6
  • 34
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification
    • Pochet N., Smet F.D., Suykens J., and Moor B.D. Systematic benchmarking of microarray data classification. Bioinformatics 20 17 (2004) 3185-3195
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    Smet, F.D.2    Suykens, J.3    Moor, B.D.4
  • 36
    • 16344388210 scopus 로고    scopus 로고
    • Bolstered error estimation provides superior feature-set ranking for small samples
    • Sima C., Braga-Neto U., and Dougherty E. Bolstered error estimation provides superior feature-set ranking for small samples. Bioinformatics 21 7 (2005) 1046-1054
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1046-1054
    • Sima, C.1    Braga-Neto, U.2    Dougherty, E.3
  • 37
    • 18744413287 scopus 로고    scopus 로고
    • Estimating misclassification error with small samples via bootstrap cross-validation
    • Fu W.J., Carroll R.J., and Wang S. Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21 9 (2005) 1979-1986
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1979-1986
    • Fu, W.J.1    Carroll, R.J.2    Wang, S.3
  • 38
    • 33748419145 scopus 로고    scopus 로고
    • C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines, Technical Report, 〈http://www.csie.ntu.edu.tw/∼cjlin/〉, 2004.
  • 44
    • 0242410408 scopus 로고    scopus 로고
    • M.A. Hall, G. Holmes, Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data En. 15 (3) (2003) 1-16.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.