메뉴 건너뛰기




Volumn 3138, Issue , 2004, Pages 1034-1042

Feature selection by markov chain Monte Carlo sampling - A bayesian approach

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CHAINS; FEATURE EXTRACTION; MARKOV PROCESSES; PATTERN RECOGNITION;

EID: 35048903577     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-27868-9_114     Document Type: Article
Times cited : (1)

References (18)
  • 2
    • 0019102962 scopus 로고
    • Computational problems of feature selection pertaining to large data sets
    • Kittler, J.: Computational problems of feature selection pertaining to large data sets. In: Proceedings of Pattern Recognition in Practice. (1980) 405-414
    • (1980) Proceedings of Pattern Recognition in Practice , pp. 405-414
    • Kittler, J.1
  • 4
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern recognition 33 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 5
    • 0017971122 scopus 로고
    • On the monotonicity of the performance of a bayesian classifier
    • Waller, W.O., Jain, A.K.: On the monotonicity of the performance of a bayesian classifier. IEEE Transactions on Information Theory 24 (1978) 120-126
    • (1978) IEEE Transactions on Information Theory , vol.24 , pp. 120-126
    • Waller, W.O.1    Jain, A.K.2
  • 6
    • 0032100159 scopus 로고    scopus 로고
    • Assessing the importance of features for multi-layer perceptrons
    • Egmont-Petersen, M., Talmon, J., Hasman, A., Ambergen, A.: Assessing the importance of features for multi-layer perceptrons. Neural networks 11 (1998) 623-635
    • (1998) Neural Networks , vol.11 , pp. 623-635
    • Egmont-Petersen, M.1    Talmon, J.2    Hasman, A.3    Ambergen, A.4
  • 7
    • 0037266163 scopus 로고    scopus 로고
    • Improving markov chain monte carlo model search for data mining
    • Giudici, P., Castelo, R.: Improving markov chain monte carlo model search for data mining. Machine learning 50 (2003) 127-158
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 9
    • 0015095089 scopus 로고    scopus 로고
    • Independence of measurements and the mean recognition accuracy
    • Chandrasekaran, B.: Independence of measurements and the mean recognition accuracy. IEEE Transactions of Information Theory 17 (2002) 452-456
    • (2002) IEEE Transactions of Information Theory , vol.17 , pp. 452-456
    • Chandrasekaran, B.1
  • 14
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters 10 (1989) 335-347
    • (1989) Pattern Recognition Letters , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 15
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine learning 9 (1992) 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 16
    • 32344446687 scopus 로고
    • Understanding the metropolis-hastings algorithm
    • Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. American statistician 49 (1995) 327-335
    • (1995) American Statistician , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.