메뉴 건너뛰기




Volumn 20, Issue 4-5, 2005, Pages 583-596

On the working set selection in gradient projection-based decomposition techniques for support vector machines

Author keywords

Decomposition techniques; Gradient projection methods; Large scale problems; Quadratic programs; Support vector machines

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; DECOMPOSITION; PROBLEM SOLVING; VECTORS;

EID: 27744479938     PISSN: 10556788     EISSN: 10294937     Source Type: Journal    
DOI: 10.1080/10556780500140714     Document Type: Conference Paper
Times cited : (26)

References (27)
  • 4
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • Flake, G.W. and Lawrence, S., 2002, Efficient SVM regression training with SMO. Machine Learning, 46(1), 271-290.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 6
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges and A. Smola (Eds) (Cambridge, MA: MIT Press)
    • Platt, J.C., 1998, Fast training of support vector machines using sequential minimal optimization. In: B. Schölkopf, C. Burges and A. Smola (Eds) Advances in Kernel Methods-Support Vector Learning (Cambridge, MA: MIT Press).
    • (1998) Advances in Kernel Methods-support Vector Learning
    • Platt, J.C.1
  • 7
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • Collobert, R. and Benjo, S., 2001, SVMTorch: support vector machines for large-scale regression problems. Journal of Machine Learning Research, 1, 143-160.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 143-160
    • Collobert, R.1    Benjo, S.2
  • 8
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • Hsu, C.W. and Lin, C.J., 2002, A simple decomposition method for support vector machines. Machine Learning, 46, 291-314.
    • (2002) Machine Learning , vol.46 , pp. 291-314
    • Hsu, C.W.1    Lin, C.J.2
  • 9
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C.J.C. Burges and A. Smola (Eds) (Cambridge, MA: MIT Press)
    • Joachims, T., 1998, Making large-scale SVM learning practical. In: B. Schölkopf, C.J.C. Burges and A. Smola (Eds) Advances in Kernel Methods-Support Vector Learning (Cambridge, MA: MIT Press).
    • (1998) Advances in Kernel Methods-support Vector Learning
    • Joachims, T.1
  • 10
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection
    • IEEE Computer Society, Puerto Rico
    • Osuna, E. and Freund, R., Girosi, F., 1997, Training support vector machines: an application to face detection. Proceedings of the CVPR'97, IEEE Computer Society, Puerto Rico, 130-136.
    • (1997) Proceedings of the CVPR'97 , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 11
    • 0037378238 scopus 로고    scopus 로고
    • A parallel solver for large quadratic programs in training support vector machines
    • Zanghirati, G. and Zanni, L., 2003, A parallel solver for large quadratic programs in training support vector machines. Parallel Computing, 29, 535-551.
    • (2003) Parallel Computing , vol.29 , pp. 535-551
    • Zanghirati, G.1    Zanni, L.2
  • 12
    • 12444278992 scopus 로고    scopus 로고
    • Gradient projection methods for quadratic programs and applications in training support vector machines
    • Serafini, T., Zanghirati, G. and Zanni, L., 2005, Gradient projection methods for quadratic programs and applications in training support vector machines. Optimization Methods and Software, 20(2-3), 353-378.
    • (2005) Optimization Methods and Software , vol.20 , Issue.2-3 , pp. 353-378
    • Serafini, T.1    Zanghirati, G.2    Zanni, L.3
  • 13
    • 0012595689 scopus 로고    scopus 로고
    • Variable projection method for large quadratic programs in training support vector machines
    • Department of Mathematics, University of Ferrara
    • Zanghirati, G. and Zanni, L., 2003, Variable projection method for large quadratic programs in training support vector machines. Technical Report 339, Department of Mathematics, University of Ferrara.
    • (2003) Technical Report , vol.339
    • Zanghirati, G.1    Zanni, L.2
  • 14
    • 27744508516 scopus 로고    scopus 로고
    • New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
    • Department of Mathematics, University of Dundee
    • Dai, Y.H. and Fletcher, R., 2003, New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Research Report NA/216, Department of Mathematics, University of Dundee.
    • (2003) Research Report , vol.NA-216
    • Dai, Y.H.1    Fletcher, R.2
  • 15
    • 0000859664 scopus 로고
    • An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
    • Pardalos, P.M. and Kovoor, N., 1990, An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Mathematical Programming, 46, 321-328.
    • (1990) Mathematical Programming , vol.46 , pp. 321-328
    • Pardalos, P.M.1    Kovoor, N.2
  • 16
    • 27744445548 scopus 로고    scopus 로고
    • Variable projection methods for large-scale quadratic optimization in data analysis applications
    • P. Daniele et al., (Ed.) (Boston: Kluwer Academic Publication)
    • Galligani, E., Ruggiero, V. and Zanni, L., 2003, Variable projection methods for large-scale quadratic optimization in data analysis applications, In: P. Daniele et al., (Ed.) Equilibrium Problems and Variational Models, Nonconvex Optimization and Its Application, 68 (Boston: Kluwer Academic Publication), pp. 186-211.
    • (2003) Equilibrium Problems and Variational Models, Nonconvex Optimization and Its Application , vol.68 , pp. 186-211
    • Galligani, E.1    Ruggiero, V.2    Zanni, L.3
  • 17
    • 0034134885 scopus 로고    scopus 로고
    • A modified projection algorithm for large strictly convex quadratic programs
    • Ruggiero, V. and Zanni, L., 2000, A modified projection algorithm for large strictly convex quadratic programs. Journal of Optimization and Theory Application, 104(2), 281-299.
    • (2000) Journal of Optimization and Theory Application , vol.104 , Issue.2 , pp. 281-299
    • Ruggiero, V.1    Zanni, L.2
  • 18
    • 0012540092 scopus 로고    scopus 로고
    • Variable projection methods for large convex quadratic programs
    • D. Trigiante (Ed.). Advances in the Theory of Computational Mathematics 3, Nova Science Publication
    • Ruggiero, V. and Zanni, L., 2000, Variable projection methods for large convex quadratic programs. In: D. Trigiante (Ed.) Recent Trends in Numerical Analysis. Advances in the Theory of Computational Mathematics 3, Nova Science Publication, 299-313.
    • (2000) Recent Trends in Numerical Analysis , pp. 299-313
    • Ruggiero, V.1    Zanni, L.2
  • 19
    • 0034228643 scopus 로고    scopus 로고
    • The analysis of decomposition methods for support vector machines
    • Chang, C.C., Hsu, C.W. and Lin, C.J., 2000, The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 11(4), 1003-1008.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.4 , pp. 1003-1008
    • Chang, C.C.1    Hsu, C.W.2    Lin, C.J.3
  • 20
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Lin, C.J., 2001, On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12, 1288-1298.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1288-1298
    • Lin, C.J.1
  • 21
    • 0038178786 scopus 로고    scopus 로고
    • Linear convergence of a decomposition method for support vector machines
    • Department of Computer Science and Information Engineering, National Taiwan University
    • Lin, C.J., 2001, Linear convergence of a decomposition method for support vector machines. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University.
    • (2001) Technical Report
    • Lin, C.J.1
  • 22
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • Keerthi, S.S. and Gilbert, E.G., 2002, Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46, 351-360.
    • (2002) Machine Learning , vol.46 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 23
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • Lin, C.J., 2002, Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 13, 248-250.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 248-250
    • Lin, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.