메뉴 건너뛰기




Volumn 41, Issue 9, 2005, Pages 1-9

Probabilistic nonlinear prediction of river flows

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL MODELS; NONLINEAR SYSTEMS; OPTIMIZATION; PROBABILITY DISTRIBUTIONS; ROBUSTNESS (CONTROL SYSTEMS); TIME SERIES ANALYSIS;

EID: 27644534911     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2005WR004136     Document Type: Article
Times cited : (19)

References (50)
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000), Artificial neural networks in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5(2), 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0027788553 scopus 로고
    • Prophesy, reality and uncertainty in distributed hydrological modeling
    • Beven, K. J. (1993), Prophesy, reality and uncertainty in distributed hydrological modeling, Adv. Water Resour., 16, 41-51.
    • (1993) Adv. Water Resour. , vol.16 , pp. 41-51
    • Beven, K.J.1
  • 4
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • Beven, K. J., and A. M. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6, 279-298.
    • (1992) Hydrol. Processes , vol.6 , pp. 279-298
    • Beven, K.J.1    Binley, A.M.2
  • 5
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models
    • Brath, A., A. Montanari, and E. Toth (2002), Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models, Hydrol. Earth Syst. Sci., 6(4), 627-640.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , Issue.4 , pp. 627-640
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 6
    • 0000948742 scopus 로고
    • A dynamical systems approach to modeling input-output systems
    • edited by M. Casdagli and S. Eubank, Addison-Wesley, Boston, Mass.
    • Casdagli, M. (1992a), A dynamical systems approach to modeling input-output systems, in Nonlinear Modeling and Prediction, edited by M. Casdagli and S. Eubank, Addison-Wesley, Boston, Mass.
    • (1992) Nonlinear Modeling and Prediction
    • Casdagli, M.1
  • 7
    • 0000202504 scopus 로고
    • Chaos and deterministic versus stochastic nonlinear modelling
    • Casdagli, M. (1992b), Chaos and deterministic versus stochastic nonlinear modelling, J. R. Stat. Soc., Ser. B Met., 54(2), 303-328.
    • (1992) J. R. Stat. Soc., Ser. B Met. , vol.54 , Issue.2 , pp. 303-328
    • Casdagli, M.1
  • 8
    • 44949273552 scopus 로고
    • State space reconstruction in the presence of noise
    • Casdagli, M., S. Eubank, J. D. Farmer, and J. F. Gibson (1991), State space reconstruction in the presence of noise, Physica D, 51, 52-98.
    • (1991) Physica D , vol.51 , pp. 52-98
    • Casdagli, M.1    Eubank, S.2    Farmer, J.D.3    Gibson, J.F.4
  • 10
    • 0346056665 scopus 로고    scopus 로고
    • Impact of meteorological predictions on real-time spring flow forecasting
    • doi:10.1002/hyp.5168
    • Coulibaly, P. (2003), Impact of meteorological predictions on real-time spring flow forecasting, Hydrol. Processes, 17(18), 3791-3801, doi:10.1002/hyp.5168.
    • (2003) Hydrol. Processes , vol.17 , Issue.18 , pp. 3791-3801
    • Coulibaly, P.1
  • 11
    • 34249982739 scopus 로고
    • Predicting chaotic time series
    • Farmer, J. D., and J. J. Sidorowich (1987), Predicting chaotic time series, Phys. Rev. Lett., 59(8), 845-848.
    • (1987) Phys. Rev. Lett. , vol.59 , Issue.8 , pp. 845-848
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 12
    • 0002635074 scopus 로고
    • Exploiting chaos to predict the future and reduce noise
    • edited by Y. C. Lee, World Sci., Hackensack, N. J.
    • Farmer, J. D., and J. J. Sidorowich (1988), Exploiting chaos to predict the future and reduce noise, in Evolution, Learning and Cognition, edited by Y. C. Lee, pp. 277-330, World Sci., Hackensack, N. J.
    • (1988) Evolution, Learning and Cognition , pp. 277-330
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 13
    • 0029659801 scopus 로고    scopus 로고
    • Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach
    • Freer, J., K. J. Beven, and B. Ambroise (1996), Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach, Water Resour. Res., 32(7), 2161-2173.
    • (1996) Water Resour. Res. , vol.32 , Issue.7 , pp. 2161-2173
    • Freer, J.1    Beven, K.J.2    Ambroise, B.3
  • 15
    • 84950646761 scopus 로고
    • The influence curve and its role in robust estimation
    • Hampel, F. R. (1974), The influence curve and its role in robust estimation, J. Am. Stat. Assoc., 69(346), 383-393.
    • (1974) J. Am. Stat. Assoc. , vol.69 , Issue.346 , pp. 383-393
    • Hampel, F.R.1
  • 16
    • 43949150640 scopus 로고
    • Nonlinear modeling and prediction by successive approximation using radial basis functions
    • He, X. D., and A. Lapedes (1994), Nonlinear modeling and prediction by successive approximation using radial basis functions, Physica D, 70(3), 289-301.
    • (1994) Physica D , vol.70 , Issue.3 , pp. 289-301
    • He, X.D.1    Lapedes, A.2
  • 17
    • 10644233031 scopus 로고    scopus 로고
    • A non-linear and stochastic response surface method for Bayesian estimation of uncertainty in soil moisture simulation from a land surface model
    • Hossain, F., E. N. Anagnostou, and K.-H. Lee (2004), A non-linear and stochastic response surface method for Bayesian estimation of uncertainty in soil moisture simulation from a land surface model, Nonlinear Processes Geophys., 11, 427-440.
    • (2004) Nonlinear Processes Geophys. , vol.11 , pp. 427-440
    • Hossain, F.1    Anagnostou, E.N.2    Lee, K.-H.3
  • 18
    • 0001400538 scopus 로고
    • Methods for ensemble prediction
    • Houtekamer, P. L., and J. Derome (1995), Methods for ensemble prediction, Mon. Weather Rev., 123, 2181-2196.
    • (1995) Mon. Weather Rev. , vol.123 , pp. 2181-2196
    • Houtekamer, P.L.1    Derome, J.2
  • 19
    • 0032030147 scopus 로고    scopus 로고
    • Use of radial basis, function type artificial neural networks for runoff simulation
    • Jayawardena, A. W., and D. A. K. Fernando (2002), Use of radial basis, function type artificial neural networks for runoff simulation, Comput. Aided Civ. Infrastruct. Eng., 13, 91-99.
    • (2002) Comput. Aided Civ. Infrastruct. Eng. , vol.13 , pp. 91-99
    • Jayawardena, A.W.1    Fernando, D.A.K.2
  • 20
    • 0028199319 scopus 로고
    • Analysis and prediction of chaos in rainfall and stream flow time series
    • Jayawardena, A. W., and F. Lai (1994), Analysis and prediction of chaos in rainfall and stream flow time series, J. Hydrol., 153, 23-52.
    • (1994) J. Hydrol. , vol.153 , pp. 23-52
    • Jayawardena, A.W.1    Lai, F.2
  • 24
    • 0039240492 scopus 로고    scopus 로고
    • Statistical mechanics of ensemble learning
    • Krogh, A., and P. Sollich (1997), Statistical mechanics of ensemble learning, Phys. Rev. E, 55(1), 811-825.
    • (1997) Phys. Rev. E , vol.55 , Issue.1 , pp. 811-825
    • Krogh, A.1    Sollich, P.2
  • 25
    • 0032853041 scopus 로고    scopus 로고
    • Bayesian theory of probabilistic forecasting via deterministic hydrologic model
    • Krzysztofowicz, R. (1999), Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35(9), 2739-2750.
    • (1999) Water Resour. Res. , vol.35 , Issue.9 , pp. 2739-2750
    • Krzysztofowicz, R.1
  • 26
    • 0035426007 scopus 로고    scopus 로고
    • The case for probabilistic forecasting in hydrology
    • Krzysztofowicz, R. (2001), The case for probabilistic forecasting in hydrology, J. Hydrol., 249, 2-9.
    • (2001) J. Hydrol. , vol.249 , pp. 2-9
    • Krzysztofowicz, R.1
  • 27
    • 0036846999 scopus 로고    scopus 로고
    • Bayesian system for probabilistic river stage forecasting
    • Krzysztofowicz, R. (2002), Bayesian system for probabilistic river stage forecasting, J. Hydrol., 268, 16-40.
    • (2002) J. Hydrol. , vol.268 , pp. 16-40
    • Krzysztofowicz, R.1
  • 28
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211, 69-85.
    • (1998) J. Hydrol. , vol.211 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 29
    • 1542646171 scopus 로고    scopus 로고
    • A comparison of nonlinear flood forecasting methods
    • doi:10.1029/2002WR001551
    • Laio, F., A. Porporato, R. Revelli, and L. Ridolfi (2003), A comparison of nonlinear flood forecasting methods, Water Resour. Res., 39(5), 1129, doi:10.1029/2002WR001551.
    • (2003) Water Resour. Res. , vol.39 , Issue.5 , pp. 1129
    • Laio, F.1    Porporato, A.2    Revelli, R.3    Ridolfi, L.4
  • 30
    • 10644228584 scopus 로고    scopus 로고
    • Detecting nonlinearity in time series driven by non-Gaussian noise: The case of river flows
    • Laio, F., A. Porporato, L. Ridolfi, and S. Tamea (2004), Detecting nonlinearity in time series driven by non-Gaussian noise: The case of river flows, Nonlinear Processes Geophys., 11(4), 463-470.
    • (2004) Nonlinear Processes Geophys. , vol.11 , Issue.4 , pp. 463-470
    • Laio, F.1    Porporato, A.2    Ridolfi, L.3    Tamea, S.4
  • 31
    • 0029663601 scopus 로고    scopus 로고
    • Nonlinear dynamics of the Great Salt Lake: Nonparametric short-term forecasting
    • Lall, U., T. Sangoyomi, and H. D. I. Abarbanel (1996), Nonlinear dynamics of the Great Salt Lake: Nonparametric short-term forecasting, Water Resour. Res., 32(4), 975-985.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 975-985
    • Lall, U.1    Sangoyomi, T.2    Abarbanel, H.D.I.3
  • 32
    • 25844526502 scopus 로고    scopus 로고
    • Large sample behaviors of generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations
    • doi:10.1029/2004WR003826
    • Montanari, A. (2005), Large sample behaviors of generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 41, W08406, doi:10.1029/2004WR003826.
    • (2005) Water Resour. Res. , vol.41
    • Montanari, A.1
  • 33
    • 2542555104 scopus 로고    scopus 로고
    • A stochastic approach for assessing the uncertainty of rainfall-runoff simulations
    • doi:10.1029/2003WR002540
    • Montanari, A., and A. Brath (2004), A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 40, W01106, doi:10.1029/2003WR002540.
    • (2004) Water Resour. Res. , vol.40
    • Montanari, A.1    Brath, A.2
  • 34
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models 1: A discussion of principle
    • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models 1: A discussion of principle, J. Hydrol., 10, 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 35
    • 0036501557 scopus 로고    scopus 로고
    • Practical inverse approach for forecasting nonlinear hydrological time series
    • doi:10.1061/(ASCE)1084-0699(2002)7:2(116)
    • Phoon, K. K., M. N. Islam, C. Y. Liaw, and S. Y. Liong (2002), Practical inverse approach for forecasting nonlinear hydrological time series, J. Hydrol. Eng., 7(2), 116-128, doi:10.1061/(ASCE)1084-0699(2002)7:2(116).
    • (2002) J. Hydrol. Eng. , vol.7 , Issue.2 , pp. 116-128
    • Phoon, K.K.1    Islam, M.N.2    Liaw, C.Y.3    Liong, S.Y.4
  • 36
    • 0030619033 scopus 로고    scopus 로고
    • Nonlinear analysis of river flow time sequences
    • Porporato, A., and L. Ridolfi (1997), Nonlinear analysis of river flow time sequences, Water Resour. Res., 33(6), 1353-1367.
    • (1997) Water Resour. Res. , vol.33 , Issue.6 , pp. 1353-1367
    • Porporato, A.1    Ridolfi, L.2
  • 37
    • 0035879624 scopus 로고    scopus 로고
    • Multivariate nonlinear prediction of river flows
    • Porporato, A., and L. Ridolfi (2001), Multivariate nonlinear prediction of river flows, J. Hydrol., 248, 109-122.
    • (2001) J. Hydrol. , vol.248 , pp. 109-122
    • Porporato, A.1    Ridolfi, L.2
  • 38
    • 4944243495 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • Dep. of Stat., Univ. of Wash., Seattle
    • Raftery, A. E., F. Balabdaoui, T. Gneiting, and M. Polakowski (2003), Using Bayesian model averaging to calibrate forecast ensembles, Tech. Rep. 440, Dep. of Stat., Univ. of Wash., Seattle.
    • (2003) Tech. Rep. 440
    • Raftery, A.E.1    Balabdaoui, F.2    Gneiting, T.3    Polakowski, M.4
  • 40
    • 0037262706 scopus 로고    scopus 로고
    • Combining dynamical and statistical ensembles
    • Roulston, M. S., and L. A. Smith (2003), Combining dynamical and statistical ensembles, Tellus. Ser. A, 55, 16-30.
    • (2003) Tellus. Ser. A , vol.55 , pp. 16-30
    • Roulston, M.S.1    Smith, L.A.2
  • 42
    • 0034737012 scopus 로고    scopus 로고
    • Chaos theory in hydrology: Important issues and interpretations
    • Sivakumar, B. (2000), Chaos theory in hydrology: Important issues and interpretations, J. Hydrol., 227, 1-20.
    • (2000) J. Hydrol. , vol.227 , pp. 1-20
    • Sivakumar, B.1
  • 43
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., A. W. Jayawardena, and T. M. K. G. Fernando (2002), River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches, J. Hydrol., 265, 225-245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 44
    • 0001977937 scopus 로고
    • Identification and prediction of low dimensional dynamics
    • Smith, L. A. (1992), Identification and prediction of low dimensional dynamics, Physica D, 58, 50-76.
    • (1992) Physica D , vol.58 , pp. 50-76
    • Smith, L.A.1
  • 45
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Dynamical Systems and Turbulence, Warwick 1980: Proceedings of a Symposium Held at the University of Warwick, edited by D. A. Rand and L. S. Young
    • Takens, F. (1981), Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Warwick 1980: Proceedings of a Symposium Held at the University of Warwick, edited by D. A. Rand and L. S. Young, Lect. Notes Math., 898, 366-381.
    • (1981) Lect. Notes Math. , vol.898 , pp. 366-381
    • Takens, F.1
  • 46
    • 0040136237 scopus 로고    scopus 로고
    • Using phase-space modelling for inferring forecasting uncertainty in nonlinear stochastic decision schemes
    • Todini, E. (1999), Using phase-space modelling for inferring forecasting uncertainty in nonlinear stochastic decision schemes, J. Hydroinf., 1(2), 75-82.
    • (1999) J. Hydroinf. , vol.1 , Issue.2 , pp. 75-82
    • Todini, E.1
  • 47
    • 7244232811 scopus 로고    scopus 로고
    • Role and treatment of uncertainty in real-time flood forecasting
    • Todini, E. (2004), Role and treatment of uncertainty in real-time flood forecasting, Hydrol. Processes, 18(14), 2743-2746.
    • (2004) Hydrol. Processes , vol.18 , Issue.14 , pp. 2743-2746
    • Todini, E.1
  • 50
    • 84986753922 scopus 로고
    • Nearest-neighbor methods for time series analysis
    • Yakowitz, S. (1987), Nearest-neighbor methods for time series analysis, J. Time Ser. Anal., 8(2), 235-247.
    • (1987) J. Time Ser. Anal. , vol.8 , Issue.2 , pp. 235-247
    • Yakowitz, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.