메뉴 건너뛰기




Volumn 5808, Issue , 2005, Pages 282-293

Synthetic aperture radar automatic target recognition using adaptive boosting

Author keywords

Adaptive boosting; Automatic target recognition; Data fusion; MSTAR

Indexed keywords

GROUND VEHICLES; IMAGING TECHNIQUES; LARGE SCALE SYSTEMS; PROBLEM SOLVING;

EID: 27544436278     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.602666     Document Type: Conference Paper
Times cited : (14)

References (18)
  • 1
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and System Sciences 55(1), pp. 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 7
    • 0033719017 scopus 로고    scopus 로고
    • Synthetic aperture radar automatic target recognition with three strategies of learning and representation
    • May
    • Q. Zhao, J. S. Principe, V. Brennan, D. Xu, and Z. Wang, "Synthetic aperture radar automatic target recognition with three strategies of learning and representation," Optical Engineering 39, pp. 1230-1244, May 2000.
    • (2000) Optical Engineering , vol.39 , pp. 1230-1244
    • Zhao, Q.1    Principe, J.S.2    Brennan, V.3    Xu, D.4    Wang, Z.5
  • 9
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • S. Mendelson and A. Smola, editors
    • R. Meir and G. Rätsch, "An introduction to boosting and leveraging," In S. Mendelson and A. Smola, editors, Advanced Lectures on Machine Learning, LNCS, Springer, pp. 119-184, 2003.
    • (2003) Advanced Lectures on Machine Learning, LNCS, Springer , pp. 119-184
    • Meir, R.1    Rätsch, G.2
  • 10
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Jan.
    • T. G. Dietterich and G. Bakiri, "Solving multiclass learning problems via error-correcting output codes," Journal of Artificial Intelligence Research 2, pp. 263-286, Jan. 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 11
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody and C. Darken, "Fast learning in networks of locally-tuned processing units," Neural Computation 1(2), pp. 281-294, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 12
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated prediction
    • R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated prediction," Machine Learning 37(3), pp. 297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 13
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," The Annals of Statistics 26(5), pp. 1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 16
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Dec.
    • E. L. Allwein, R. E. Schapire, and Y. Singer, "Reducing multiclass to binary: A unifying approach for margin classifiers," Jouranl of Machine Learning Research 1, pp. 113-141, Dec. 2000.
    • (2000) Jouranl of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.