메뉴 건너뛰기




Volumn 95, Issue 8, 2004, Pages 4184-4192

Structural and electronic properties of wide band gap Zn 1-xMgxSe alloys

Author keywords

[No Author keywords available]

Indexed keywords

COMPOSITION; ELECTRONS; EXTRAPOLATION; OPTICAL WAVEGUIDES; PARAMETER ESTIMATION; PHOTOELECTRON SPECTROSCOPY; RUTHERFORD BACKSCATTERING SPECTROSCOPY; SAMPLING; SECONDARY ION MASS SPECTROMETRY; SEMICONDUCTOR MATERIALS; SEMICONDUCTOR QUANTUM WELLS; SYNTHESIS (CHEMICAL); X RAY DIFFRACTION;

EID: 2342481277     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.1682688     Document Type: Article
Times cited : (7)

References (61)
  • 15
    • 0000143467 scopus 로고
    • S. Adachi and T. Taguchi, Phys. Rev. B 43, 9569 (1991), report a ZnSe RT gap of 2.69 eV; U. Lunz, B. Jobst, S. Einfeldt, C. R. Becker, D. Hommel, and G. Landwehr, J. Appl. Phys. 77, 5377 (1995), found a ZnSe RT gap of 2.68 eV; while C. C. Kim and S. Sivananthan, Phys. Rev. B 53, 1475 (1996), report a RT gap of 2.711 eV. Our determination of the ZnSe RT band gap using optical absorption in transmission yielded 2.694 eV.
    • (1991) Phys. Rev. B , vol.43 , pp. 9569
    • Adachi, S.1    Taguchi, T.2
  • 16
    • 0000932161 scopus 로고
    • S. Adachi and T. Taguchi, Phys. Rev. B 43, 9569 (1991), report a ZnSe RT gap of 2.69 eV; U. Lunz, B. Jobst, S. Einfeldt, C. R. Becker, D. Hommel, and G. Landwehr, J. Appl. Phys. 77, 5377 (1995), found a ZnSe RT gap of 2.68 eV; while C. C. Kim and S. Sivananthan, Phys. Rev. B 53, 1475 (1996), report a RT gap of 2.711 eV. Our determination of the ZnSe RT band gap using optical absorption in transmission yielded 2.694 eV.
    • (1995) J. Appl. Phys. , vol.77 , pp. 5377
    • Lunz, U.1    Jobst, B.2    Einfeldt, S.3    Becker, C.R.4    Hommel, D.5    Landwehr, G.6
  • 17
    • 0001491251 scopus 로고    scopus 로고
    • S. Adachi and T. Taguchi, Phys. Rev. B 43, 9569 (1991), report a ZnSe RT gap of 2.69 eV; U. Lunz, B. Jobst, S. Einfeldt, C. R. Becker, D. Hommel, and G. Landwehr, J. Appl. Phys. 77, 5377 (1995), found a ZnSe RT gap of 2.68 eV; while C. C. Kim and S. Sivananthan, Phys. Rev. B 53, 1475 (1996), report a RT gap of 2.711 eV. Our determination of the ZnSe RT band gap using optical absorption in transmission yielded 2.694 eV.
    • (1996) Phys. Rev. B , vol.53 , pp. 1475
    • Kim, C.C.1    Sivananthan, S.2
  • 25
    • 2342602900 scopus 로고    scopus 로고
    • note
    • Because we fabricated alloy epilayers thick enough to be fully relaxed, comparison should be made with the calculated properties of the free-standing superlattice.
  • 33
    • 21544469212 scopus 로고    scopus 로고
    • private communication
    • 12 elastic constants in MgSe were calculated in the plane-wave pseudopotential framework of DFT, by numerical differentiation of the stress tensor with respect to uniaxial cell deformation (±1%) in the (001) direction.
    • De Gironcoli, S.1
  • 41
    • 2342492825 scopus 로고    scopus 로고
    • note
    • We used a kinetic energy cutoff of 25 Ry for the plane-wave expansion, special points Brillouin zone sampling (six special points within the irreducible wedge for the zinc blende structure, and almost equivalent sets for all other structures), and norm-conserving pseudopotentials with the Zn 3d electrons treated as core electrons, and including nonlinear core corrections for the cations.
  • 48
    • 2342493778 scopus 로고    scopus 로고
    • note
    • The supercell results showed significant variations as a function of composition and the specific supercell used, varying from +0.04 eV for the chalcopyrite structure to +0.8 eV for the luzonite structure, with intermediate values for the famatinite structure.
  • 49
    • 0001275495 scopus 로고    scopus 로고
    • E=+0.7eV. We notice that this estimate should be taken with some caution, since it was obtained from the result for a single alloy composition and from binary gaps that differ by a much smaller amount than the difference of the experimental optical gaps.
    • (1999) Appl. Phys. Lett. , vol.75 , pp. 2746
    • Saitta, A.M.1    De Gironcoli, S.2    Baroni, S.3
  • 53
    • 0037113578 scopus 로고    scopus 로고
    • Comparing the LDA gap reported here for ZnSe with the experimental value makes a self-energy correction of 1.5 eV seem too large. However, we point out that our pseudopotential for Zn was constructed treating the 3d electrons as core electrons and adding nonlinear core corrections. Treating the 3d electrons as valence electrons would have reduced the LDA gap for ZnSe to about 1 eV - see, for instance, W. Luo, S. Ismail-Beigi, M. L. Cohen, and S. G. Louie, Phys. Rev. B 66, 195215 (2002); A. Continenza, S. Massidda, and A. J. Freeman, ibid. 38, 12996 (1988) - so that a 1.5 eV self-energy correction would have become appropriate.
    • (2002) Phys. Rev. B , vol.66 , pp. 195215
    • Luo, W.1    Ismail-Beigi, S.2    Cohen, M.L.3    Louie, S.G.4
  • 54
    • 0040987868 scopus 로고
    • Comparing the LDA gap reported here for ZnSe with the experimental value makes a self-energy correction of 1.5 eV seem too large. However, we point out that our pseudopotential for Zn was constructed treating the 3d electrons as core electrons and adding nonlinear core corrections. Treating the 3d electrons as valence electrons would have reduced the LDA gap for ZnSe to about 1 eV - see, for instance, W. Luo, S. Ismail-Beigi, M. L. Cohen, and S. G. Louie, Phys. Rev. B 66, 195215 (2002); A. Continenza, S. Massidda, and A. J. Freeman, ibid. 38, 12996 (1988) - so that a 1.5 eV self-energy correction would have become appropriate.
    • (1988) Phys. Rev. B , vol.38 , pp. 12996
    • Continenza, A.1    Massidda, S.2    Freeman, A.J.3
  • 58
    • 0002806268 scopus 로고    scopus 로고
    • The data of B. Jobst, D. Hommel, U. Lunz, T. Gebhardt, and G. Landwehr, Appl. Phys. Lett. 69, 97 (1996) show a pronounced nonlinearity in the dependence of the band gap on lattice parameter only for lattice parameters above 5.85 A. For lower lattice parameters a linear fit would be more accurate. For clarity, in Fig. 5 we used such a linear fit to replace the actual experimental points by Jobst et al.
    • (1996) Appl. Phys. Lett. , vol.69 , pp. 97
    • Jobst, B.1    Hommel, D.2    Lunz, U.3    Gebhardt, T.4    Landwehr, G.5
  • 60
    • 33646171801 scopus 로고
    • In the kinetic-energy range of interest, the escape depth of normally emitted Zn 3d and Mg 2p photoelectrons is about 27 Å, see E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. B 28, 1965 (1983). In our experimental geometry the average photoelectron collection angle is 55° from the sample normal, leading to an effective escape depth of about 15 Å.
    • (1983) Phys. Rev. B , vol.28 , pp. 1965
    • Kraut, E.A.1    Grant, R.W.2    Waldrop, J.R.3    Kowalczyk, S.P.4
  • 61
    • 0003412161 scopus 로고
    • Pergamon, New York
    • The 4 MeV beam samples the whole II-VI layer and part of the GaAs substrate. The concentration value, on the other hand, was derived only by considering backscattering energies from 3000 to 3300 keV. This energy range roughly corresponds to the first 3000 Å of the sample [see J. F. Ziegler, Stopping Power and Ranges of Ions in Matter (Pergamon, New York, 1977), Vol. 4.
    • (1977) Stopping Power and Ranges of Ions in Matter , vol.4
    • Ziegler, J.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.