메뉴 건너뛰기




Volumn 11, Issue 6, 2000, Pages 1263-1271

Building cost functions minimizing to some summary statistics

Author keywords

A posteriori probabilities estimation; Absolute deviations; Conditional expectation estimation; Cost function; L 1 approximation; Loss function; Median; Median estimation; Penalty function; Performance criterion; q quantile; Quasi likelihood

Indexed keywords


EID: 0010481518     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.883416     Document Type: Article
Times cited : (47)

References (65)
  • 4
    • 0009257350 scopus 로고
    • 1 approximation and the analysis of data
    • 1 approximation and the analysis of data," Appl. Statist., vol. 17, pp. 51-57, 1968.
    • (1968) Appl. Statist. , vol.17 , pp. 51-57
    • Barrodale, I.1
  • 6
    • 84976801242 scopus 로고
    • 1 norm
    • 1 norm," Commun. ACM, vol. 17, no. 6, pp. 319-320, 1974.
    • (1974) Commun. ACM , vol.17 , Issue.6 , pp. 319-320
  • 7
    • 0024925404 scopus 로고
    • Distance measures for signal processing and pattern recognition
    • M. Basseville, "Distance measures for signal processing and pattern recognition," Signal Processing, vol. 18, pp. 349-369, 1989.
    • (1989) Signal Processing , vol.18 , pp. 349-369
    • Basseville, M.1
  • 9
    • 0001160245 scopus 로고
    • Regression with non-Gaussian stable disturbances: Some sampling results
    • R. Blattberg and T. Sargent, "Regression with non-Gaussian stable disturbances: Some sampling results," Econometrica, vol. 39, no. 3, pp. 501-510, 1971.
    • (1971) Econometrica , vol.39 , Issue.3 , pp. 501-510
    • Blattberg, R.1    Sargent, T.2
  • 11
    • 0001373629 scopus 로고
    • Links between Markov models and multilayer perceptrons
    • Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • H. Bourlard and C. Wellekens, "Links between Markov models and multilayer perceptrons," in Advances in Neural Information Processing Systems 1, Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 502-510.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 502-510
    • Bourlard, H.1    Wellekens, C.2
  • 12
    • 33747661993 scopus 로고
    • Asymmetric nonmean-square error criteria
    • J. L. Brown, "Asymmetric nonmean-square error criteria," IEEE Trans. Automat. Contr., vol. AC-7, pp. 64-66, 1962.
    • (1962) IEEE Trans. Automat. Contr. , vol.AC-7 , pp. 64-66
    • Brown, J.L.1
  • 13
    • 0000338621 scopus 로고
    • Changes in the U.S. Wage Structure 1963-1987: An application of quantile regression
    • M. Buchinsky, "Changes in the U.S. Wage Structure 1963-1987: An application of quantile regression," Econometrica, vol. 62, pp. 405-458, 1994.
    • (1994) Econometrica , vol.62 , pp. 405-458
    • Buchinsky, M.1
  • 14
    • 0025754995 scopus 로고
    • A norm selection criterion for the generalized delta rule
    • Jan.
    • P. Burrascano, "A norm selection criterion for the generalized delta rule," IEEE Trans. Neural Networks, vol. 2, pp. 125-130, Jan. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 125-130
    • Burrascano, P.1
  • 16
    • 0002345034 scopus 로고
    • The comparison and evaluation of forecasters
    • M. De Groot and S. Fienberg, "The comparison and evaluation of forecasters," Statistician, vol. 32, pp. 12-22, 1983.
    • (1983) Statistician , vol.32 , pp. 12-22
    • De Groot, M.1    Fienberg, S.2
  • 17
    • 0003650819 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • R. Deutsch, Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1965.
    • (1965) Estimation Theory
    • Deutsch, R.1
  • 18
    • 0043068126 scopus 로고
    • A note on curve fitting with minimum deviations by linear programming
    • W. Fisher, "A note on curve fitting with minimum deviations by linear programming," J Amer. Statist. Assoc., vol. 56, pp. 359-362, 1961.
    • (1961) J Amer. Statist. Assoc. , vol.56 , pp. 359-362
    • Fisher, W.1
  • 20
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • H. Gish, "A probabilistic approach to the understanding and training of neural network classifiers," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), 1990, pp. 1361-1364.
    • (1990) Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP) , pp. 1361-1364
    • Gish, H.1
  • 21
    • 0027940938 scopus 로고
    • Classification of temporal trajectories by continuous time recurrent nets
    • L. Gonzales Sotelino, M. Saerens, and H. Bersini, "Classification of temporal trajectories by continuous time recurrent nets," Neural Networks, vol. 7, no. 5, pp. 767-776, 1994.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 767-776
    • Gonzales Sotelino, L.1    Saerens, M.2    Bersini, H.3
  • 22
    • 0001770345 scopus 로고
    • Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function
    • D. Touretzky, J. Elman, T. Sejnowski, and G. Hinton, Eds. San Mateo, CA: Morgan Kaufmann
    • J. B. Hampshire and B. Pearlmutter, "Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function," in Proc. 1990 Connectionnist Models Summer School, D. Touretzky, J. Elman, T. Sejnowski, and G. Hinton, Eds. San Mateo, CA: Morgan Kaufmann, 1990, pp. 159-172.
    • (1990) Proc. 1990 Connectionnist Models Summer School , pp. 159-172
    • Hampshire, J.B.1    Pearlmutter, B.2
  • 23
    • 0040864042 scopus 로고
    • Minkowski-r backpropagation: Learning in connectionist models with non-Euclidian error signals
    • D. Anderson, Ed. College Park, MD: Amer. Inst. Phys.
    • S. Hanson and D. Burr, "Minkowski-r backpropagation: Learning in connectionist models with non-Euclidian error signals," in Neural Information Processing Systems, D. Anderson, Ed. College Park, MD: Amer. Inst. Phys., 1988, pp. 348-357.
    • (1988) Neural Information Processing Systems , pp. 348-357
    • Hanson, S.1    Burr, D.2
  • 26
    • 0026191131 scopus 로고
    • Bayes statistical behavior and valid generalization of pattern classifying neural networks
    • July
    • F. Kanaya and S. Miyake, "Bayes statistical behavior and valid generalization of pattern classifying neural networks," IEEE Trans. Neural Networks, vol. 2, pp. 471-475, July 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 471-475
    • Kanaya, F.1    Miyake, S.2
  • 28
    • 0000273843 scopus 로고
    • Regression quantiles
    • R. Koenker and G. Bassett, "Regression quantiles," Econometrica, vol. 46, no. 1, pp. 33-50, 1978.
    • (1978) Econometrica , vol.46 , Issue.1 , pp. 33-50
    • Koenker, R.1    Bassett, G.2
  • 29
    • 0000809318 scopus 로고
    • Computing regression quantiles
    • R. Koenker and V. D'Orey, "Computing regression quantiles," Appl. Statist., vol. 36, pp. 383-393, 1987.
    • (1987) Appl. Statist. , vol.36 , pp. 383-393
    • Koenker, R.1    D'Orey, V.2
  • 31
    • 23944436740 scopus 로고
    • A theorical framework for backpropagation
    • D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann
    • Y. Le Cun, "A theorical framework for backpropagation," in Proc. 1988 Connectionnist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, 1989, pp. 21-28.
    • (1989) Proc. 1988 Connectionnist Models Summer School , pp. 21-28
    • Le Cun, Y.1
  • 32
    • 0002066122 scopus 로고
    • Scoring rules and the inevitability of probability
    • D. Lindley, "Scoring rules and the inevitability of probability (with discussions)," Int. Statist. Rev., vol. 50, pp. 1-26, 1982.
    • (1982) Int. Statist. Rev. , vol.50 , pp. 1-26
    • Lindley, D.1
  • 33
    • 0016961866 scopus 로고
    • Scoring rules for continuous probability distributions
    • J. Matheson and R. Winkler, "Scoring rules for continuous probability distributions," Management Sci., vol. 22, pp. 1087-1096, 1976.
    • (1976) Management Sci. , vol.22 , pp. 1087-1096
    • Matheson, J.1    Winkler, R.2
  • 38
    • 0027635149 scopus 로고
    • On loss functions which minimize to conditional expected values and posterior probabilities
    • _, "On loss functions which minimize to conditional expected values and posterior probabilities," IEEE Trans. Inform. Theory, vol. 39, pp. 1404-1408, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 1404-1408
  • 43
    • 0042197529 scopus 로고
    • Absolute deviations curve fitting: An alternative to least squares
    • H. A. David, Ed. New York: Academic
    • R. Pfaffenberger and J. Dinkel, "Absolute deviations curve fitting: An alternative to least squares," in Contributions to Survey Sampling and Applied Statistics, H. A. David, Ed. New York: Academic, 1978, pp. 279-294.
    • (1978) Contributions to Survey Sampling and Applied Statistics , pp. 279-294
    • Pfaffenberger, R.1    Dinkel, J.2
  • 44
    • 0004260833 scopus 로고
    • Cambridge, U.K.: Cambridge Univ. Press
    • 1 Approximation. Cambridge, U.K.: Cambridge Univ. Press, 1989.
    • (1989) 1 Approximation
    • Pinkus, A.1
  • 45
    • 0001595997 scopus 로고
    • Neural-network classifiers estimate Bayesian a posteriori probabilities
    • M. D. Richard and R. P. Lippmann, "Neural-network classifiers estimate Bayesian a posteriori probabilities," Neural Comput., vol. 3, pp. 461-483, 1991.
    • (1991) Neural Comput. , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 46
    • 0007309779 scopus 로고    scopus 로고
    • A short proof of the posterior probability property of classifier neural networks
    • R. Rojas, "A short proof of the posterior probability property of classifier neural networks," Neural Comput., vol. 8, pp. 41-43, 1996.
    • (1996) Neural Comput. , vol.8 , pp. 41-43
    • Rojas, R.1
  • 48
    • 0025670892 scopus 로고
    • The multilayer perceptron as an approximation to a Bayes optimal discriminant function
    • D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, "The multilayer perceptron as an approximation to a Bayes optimal discriminant function," IEEE Trans. Neural Networks, vol. 1, pp. 296-298, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 296-298
    • Ruck, D.W.1    Rogers, S.K.2    Kabrisky, M.3    Oxley, M.E.4    Suter, B.W.5
  • 50
    • 0010515842 scopus 로고    scopus 로고
    • Nonmean square error criteria for the training of learning machines
    • Bari, Italy, July
    • M. Saerens, "Nonmean square error criteria for the training of learning machines," in Proc. 13th Int. Conf. Machine Learning (ICML), Bari, Italy, July 1996, pp. 427-434.
    • (1996) Proc. 13th Int. Conf. Machine Learning (ICML) , pp. 427-434
    • Saerens, M.1
  • 52
    • 0029023603 scopus 로고
    • Recurrent neural networks can be trained to be maximum a posteriori probability classifiers
    • S. Santini and A. Del Bimbo, "Recurrent neural networks can be trained to be maximum a posteriori probability classifiers," Neural Networks, vol. 8, no. 1, pp. 25-29, 1995.
    • (1995) Neural Networks , vol.8 , Issue.1 , pp. 25-29
    • Santini, S.1    Del Bimbo, A.2
  • 53
    • 84950658032 scopus 로고
    • Elicitation of personal probabilities and expectations
    • L. Savage, "Elicitation of personal probabilities and expectations," J. Amer. Statist. Assoc., vol. 66, pp. 783-801, 1971.
    • (1971) J. Amer. Statist. Assoc. , vol.66 , pp. 783-801
    • Savage, L.1
  • 54
    • 84891815019 scopus 로고
    • An iterative technique for absolute deviations curve fitting
    • E. Schlossmacher, "An iterative technique for absolute deviations curve fitting," J. Amer. Statist. Assoc., vol. 68, pp. 857-865, 1973.
    • (1973) J. Amer. Statist. Assoc. , vol.68 , pp. 857-865
    • Schlossmacher, E.1
  • 55
    • 0000989949 scopus 로고
    • Nonmean-square error criteria
    • S. Sherman, "Nonmean-square error criteria," IEEE Trans. Inform. Theory, vol. IT-4, pp. 125-126, 1958.
    • (1958) IEEE Trans. Inform. Theory , vol.IT-4 , pp. 125-126
    • Sherman, S.1
  • 56
    • 0025840875 scopus 로고
    • A note on least-squares learning procedures and classification by neural-network models
    • P. A. Shoemaker, "A note on least-squares learning procedures and classification by neural-network models," IEEE Trans. Neural Networks, vol. 2, pp. 158-160, 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 158-160
    • Shoemaker, P.A.1
  • 58
    • 0003050316 scopus 로고
    • Estimation by minimizing the sum of absolute errors
    • P. Zarembka, Ed. New York: Academic
    • L. D. Taylor, "Estimation by minimizing the sum of absolute errors," in Frontiers in Econometrics, P. Zarembka, Ed. New York: Academic, 1974, pp. 169-190.
    • (1974) Frontiers in Econometrics , pp. 169-190
    • Taylor, L.D.1
  • 59
    • 0001351879 scopus 로고
    • Linear programming techniques for regression analysis
    • H. M. Wagner, "Linear programming techniques for regression analysis," J. Amer. Statist. Assoc., vol. 54, pp. 206-212, 1959.
    • (1959) J. Amer. Statist. Assoc. , vol.54 , pp. 206-212
    • Wagner, H.M.1
  • 60
    • 0025597157 scopus 로고
    • Neural network classification: A Bayesian interpretation
    • E. A. Wan, "Neural network classification: A Bayesian interpretation," IEEE Trans. Neural Networks, vol. 1, pp. 303-305, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 303-305
    • Wan, E.A.1
  • 62
    • 0016335739 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • R. Wedderburn, "Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method," Biometrika, vol. 61, no. 3, pp. 439-447, 1974.
    • (1974) Biometrika , vol.61 , Issue.3 , pp. 439-447
    • Wedderburn, R.1
  • 63
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • H. White, "Learning in artificial neural networks: A statistical perspective," Neural Comput., vol. 1, pp. 425-464, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1
  • 64
    • 84989485360 scopus 로고
    • Least squares versus minimum absolute deviations estimation in linear models
    • H. Wilson, "Least squares versus minimum absolute deviations estimation in linear models," Decision Sci., vol. 9, pp. 322-335, 1978.
    • (1978) Decision Sci. , vol.9 , pp. 322-335
    • Wilson, H.1
  • 65
    • 84950930899 scopus 로고
    • Bayesian estimation and prediction using asymmetric loss functions
    • A. Zellner, "Bayesian estimation and prediction using asymmetric loss functions," J. Amer. Statist. Assoc., vol. 81, pp. 446-451, 1986.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 446-451
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.