메뉴 건너뛰기




Volumn 57, Issue 1-4, 2004, Pages 215-238

An integrated learning approach to environment modelling in mobile robot navigation

Author keywords

Mobile robot navigation; Recurrent neural networks; Reinforcement learning

Indexed keywords

NEURAL NETWORKS; PHYSIOLOGY; PROXIMITY SENSORS; VIDEO CAMERAS;

EID: 1642446952     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2003.10.005     Document Type: Article
Times cited : (15)

References (40)
  • 1
    • 24244447729 scopus 로고    scopus 로고
    • Reinforcement learning for a mobile service robot
    • M.Sc. Thesis, Royal Institute of Technology, Stockholm, Sweden
    • M. Ahlander, Reinforcement learning for a mobile service robot, M.Sc. Thesis, Royal Institute of Technology, Stockholm, Sweden.
    • Ahlander, M.1
  • 2
    • 0002758237 scopus 로고
    • Q-learning with hidden-unit restarting
    • S. Hanson, J. Cowan, C. Giles (Eds.), Morgan Kaufmann Publishers, San Mateo, CA
    • C. Anderson, Q-learning with hidden-unit restarting, in: S. Hanson, J. Cowan, C. Giles (Eds.), Advances in Neural Information Processing Systems, Vol. 5, Morgan Kaufmann Publishers, San Mateo, CA, 1993, pp. 81-88.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 81-88
    • Anderson, C.1
  • 4
    • 0034233325 scopus 로고    scopus 로고
    • Stable behavior in a recurrent neural network for a finite state machine
    • Arai K. Nakano R. Stable behavior in a recurrent neural network for a finite state machine Neural Networks 13 6 2000 667-680
    • (2000) Neural Networks , vol.13 , Issue.6 , pp. 667-680
    • Arai, K.1    Nakano, R.2
  • 5
    • 0035384037 scopus 로고    scopus 로고
    • Spatial orientation in navigating agents: Modeling head-direction cells
    • Arleo A. Gerstner W. Spatial orientation in navigating agents: modeling head-direction cells Neurocomputing 38-40 2001 1059-1065
    • (2001) Neurocomputing , vol.38-40 , pp. 1059-1065
    • Arleo, A.1    Gerstner, W.2
  • 6
    • 0028558045 scopus 로고
    • Mobile robot visual mapping and localization: A view-based neurocomputational architecture that emulates hippocampal place learning
    • Bachelder I. Waxman A. Mobile robot visual mapping and localization: a view-based neurocomputational architecture that emulates hippocampal place learning Neural Networks 7 6/7 1994 1083-1099
    • (1994) Neural Networks , vol.7 , Issue.6-7 , pp. 1083-1099
    • Bachelder, I.1    Waxman, A.2
  • 9
    • 24244472096 scopus 로고    scopus 로고
    • Glossary for behavior analysis
    • University of South Florida
    • D. Bostow, B. Tompkins, Glossary for behavior analysis, University of South Florida, http://www.coedu.usf.edu/abaglossary
    • Bostow, D.1    Tompkins, B.2
  • 10
    • 0025957717 scopus 로고
    • Intelligence without representation
    • Brooks R. Intelligence without representation Artif. Intell. 47 1991 262-276
    • (1991) Artif. Intell. , vol.47 , pp. 262-276
    • Brooks, R.1
  • 11
    • 0028563266 scopus 로고
    • A model of hippocampal function neural networks
    • Burgess N. Recce M. O'Keefe J. A model of hippocampal function neural networks Neural Networks 7 6/7 1994 1065-1081
    • (1994) Neural Networks , vol.7 , Issue.6-7 , pp. 1065-1081
    • Burgess, N.1    Recce, M.2    O'Keefe, J.3
  • 12
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite-state machine extraction
    • Casey M. The dynamics of discrete-time computation, with application to recurrent neural networks and finite-state machine extraction Neural Comput. 8 6 1996 1135-1178
    • (1996) Neural Comput. , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.1
  • 14
    • 0029191929 scopus 로고
    • Evolutionary design of application-specific neural networks: A genetic approach
    • Dobnikar A. Evolutionary design of application-specific neural networks: a genetic approach Neural Network World 1 1995 41-50
    • (1995) Neural Network World , vol.1 , pp. 41-50
    • Dobnikar, A.1
  • 16
    • 0013014729 scopus 로고    scopus 로고
    • On-line identification and rule extraction of finite state automata with recurrent neural networks
    • Prague, Czech Republic, Springer, Wien, New York
    • I. Gabrijel, A. Dobnikar, On-line identification and rule extraction of finite state automata with recurrent neural networks, in: Proceedings of the ICANNGA'2001, Prague, Czech Republic, Springer, Wien, New York, 2001, pp. 78-81.
    • (2001) Proceedings of the ICANNGA'2001 , pp. 78-81
    • Gabrijel, I.1    Dobnikar, A.2
  • 17
    • 0029560406 scopus 로고
    • Learning a class of large finite state machines with a recurrent neural network
    • Giles C. Horne B. Lin T. Learning a class of large finite state machines with a recurrent neural network Neural Networks 8 9 1995 1359-1365
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1359-1365
    • Giles, C.1    Horne, B.2    Lin, T.3
  • 19
    • 77956088212 scopus 로고    scopus 로고
    • Educational psychology interactive
    • W. Huitt, Educational psychology interactive, http://chiron.valdosta.edu/whuitt
    • Huitt, W.1
  • 21
    • 0005551545 scopus 로고    scopus 로고
    • Learning to solve multiple goals
    • Ph.D. Thesis, TR 646, University of Rochester, Rochester, New York
    • J. Karlsson, Learning to solve multiple goals, Ph.D. Thesis, TR 646, University of Rochester, Rochester, New York, 1997.
    • (1997)
    • Karlsson, J.1
  • 22
    • 78649700915 scopus 로고    scopus 로고
    • The theory into practice database
    • G. Kearsley, The theory into practice database, http://tip.psychology.org/arousal.html
    • Kearsley, G.1
  • 24
    • 0026880130 scopus 로고
    • Automatic programming of behavior-based robots using reinforcement learning
    • Mahadevan S. Connell J. Automatic programming of behavior-based robots using reinforcement learning Artif. Intell. 55 1992 311-365
    • (1992) Artif. Intell. , vol.55 , pp. 311-365
    • Mahadevan, S.1    Connell, J.2
  • 25
    • 0033083995 scopus 로고    scopus 로고
    • On the improvement of the real time recurrent learning algorithm for recurrent neural networks
    • Mak M. Ku K. Lu Y. On the improvement of the real time recurrent learning algorithm for recurrent neural networks Neurocomputing 24 1999 13-36
    • (1999) Neurocomputing , vol.24 , pp. 13-36
    • Mak, M.1    Ku, K.2    Lu, Y.3
  • 26
    • 0026882311 scopus 로고
    • Integration of representation into goal-driven behavior-based robots
    • Mataric M.J. Integration of representation into goal-driven behavior-based robots IEEE Trans. Robotics Autom. 8 3 1992 304-312
    • (1992) IEEE Trans. Robotics Autom. , vol.8 , Issue.3 , pp. 304-312
    • Mataric, M.J.1
  • 27
    • 1642565167 scopus 로고    scopus 로고
    • D. Miles, http://luna.cas.usf.edu/~miles/envpsych.htm
    • Miles, D.1
  • 29
    • 0030585201 scopus 로고    scopus 로고
    • Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants
    • Omlin C. Giles C. Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants Neural Comput. 8 4 1996 675-696
    • (1996) Neural Comput. , vol.8 , Issue.4 , pp. 675-696
    • Omlin, C.1    Giles, C.2
  • 30
    • 0033213823 scopus 로고    scopus 로고
    • Adaptive internal state space construction method for reinforcement learning of a real-world agent
    • Samejima K. Omori T. Adaptive internal state space construction method for reinforcement learning of a real-world agent Neural Networks 12 7-8 1999 1143-1155
    • (1999) Neural Networks , vol.12 , Issue.7-8 , pp. 1143-1155
    • Samejima, K.1    Omori, T.2
  • 31
    • 84938694789 scopus 로고    scopus 로고
    • Recurrent neural networks in a mobile robot navigation task
    • Prague, Czech Republic, Springer, Wien, New York
    • B. Šter, Recurrent neural networks in a mobile robot navigation task, in: Proc. ICANNGA'2001, Prague, Czech Republic, Springer, Wien, New York, 2001, 169-172.
    • (2001) Proc. ICANNGA'2001 , pp. 169-172
    • Šter, B.1
  • 32
    • 0032072476 scopus 로고    scopus 로고
    • Recurrent neural network training by a learning automaton approach for trajectory learning and control system design
    • Sundareshan M. Condarcure T. Recurrent neural network training by a learning automaton approach for trajectory learning and control system design IEEE Trans. Neural Networks 9 3 1998 354-368
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.3 , pp. 354-368
    • Sundareshan, M.1    Condarcure, T.2
  • 34
    • 0030164858 scopus 로고    scopus 로고
    • Model-based learning for mobile robot navigation from the dynamical systems perspective
    • Tani J. Model-based learning for mobile robot navigation from the dynamical systems perspective IEEE Trans. Systems Man Cybernet. B 26 3 1996 421-436
    • (1996) IEEE Trans. Systems Man Cybernet. B , vol.26 , Issue.3 , pp. 421-436
    • Tani, J.1
  • 35
    • 0033213813 scopus 로고    scopus 로고
    • Learning to perceive the world as articulated: An approach for hierarchical learning in sensory-motor systems
    • Tani J. Nolfi S. Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems Neural Networks 12 1999 1131-1141
    • (1999) Neural Networks , vol.12 , pp. 1131-1141
    • Tani, J.1    Nolfi, S.2
  • 36
    • 1642565165 scopus 로고    scopus 로고
    • Time series prediction using modular recurrent neural network
    • Lille, France, Cité Scientifique, Lille
    • M. Trebar, A. Dobnikar, Time series prediction using modular recurrent neural network, in: Proc. CESA'96, IMACS Multiconference, Lille, France, Cité Scientifique, Lille, 1996, pp. 160-165.
    • (1996) Proc. CESA'96, IMACS Multiconference , pp. 160-165
    • Trebar, M.1    Dobnikar, A.2
  • 37
    • 18844463695 scopus 로고    scopus 로고
    • Biologically based artificial navigation systems: Review and prospects
    • Trullier O. Wiener S. Berthoz A. Meyer J. Biologically based artificial navigation systems: review and prospects Prog. Neurobiol. 51 5 1997 483-544
    • (1997) Prog. Neurobiol. , vol.51 , Issue.5 , pp. 483-544
    • Trullier, O.1    Wiener, S.2    Berthoz, A.3    Meyer, J.4
  • 39
    • 34249833101 scopus 로고
    • Technical note: Q-learning
    • Watkins J. Dayan P. Technical note: Q-learning Mach. Learning 8 1992 279-292
    • (1992) Mach. Learning , vol.8 , pp. 279-292
    • Watkins, J.1    Dayan, P.2
  • 40
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R. Zipser D. A learning algorithm for continually running fully recurrent neural networks Neural Comput. 1 2 1989 270-280
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.