메뉴 건너뛰기




Volumn 8, Issue 4, 1996, Pages 675-696

Stable Encoding of Large Finite-State Automata in Recurrent Neural Networks with Sigmoid Discriminants

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATION; COMPUTER PROGRAM; COMPUTER SIMULATION; DISCRIMINANT ANALYSIS; NERVE CELL; RANDOMIZATION;

EID: 0030585201     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1996.8.4.675     Document Type: Article
Times cited : (38)

References (17)
  • 1
    • 0011252246 scopus 로고
    • Effecient stimulation of finite automata by neural nets
    • Alon, N., Dewdney, A., and Ott, T. 1991. Effecient stimulation of finite automata by neural nets. J. Assoc. Computing Mach. 38(2), 495-514.
    • (1991) J. Assoc. Computing Mach. , vol.38 , Issue.2 , pp. 495-514
    • Alon, N.1    Dewdney, A.2    Ott, T.3
  • 2
    • 0040973442 scopus 로고
    • An algebraic framework to represent finite state machines in single-layer recurrent neural networks
    • Alquezar, R., and Sanfeliu, A. (1995). An algebraic framework to represent finite state machines in single-layer recurrent neural networks. Neural Comp. 7(5), 931.
    • (1995) Neural Comp. , vol.7 , Issue.5 , pp. 931
    • Alquezar, R.1    Sanfeliu, A.2
  • 3
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. 1990. Finding structure in time. Cog. Sci. 14, 179-211.
    • (1990) Cog. Sci. , vol.14 , pp. 179-211
    • Elman, J.1
  • 4
    • 0026372556 scopus 로고
    • A unified approach for integrating explicit knowledge and learning by example in recurrent networks
    • IEEE 91CH3049-4
    • Frasconi, P., Gori, M., Maggini, M., and Soda, G. 1991. A unified approach for integrating explicit knowledge and learning by example in recurrent networks. Proc. Int. Joint Conf. Neural Networks 1, 811. IEEE 91CH3049-4.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 811
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 6
    • 84953506049 scopus 로고
    • Extraction, insertion and refinement of symbolic rules in dynamically driven recurrent neural networks
    • Giles, C., and Omlin, C. 1993. Extraction, insertion and refinement of symbolic rules in dynamically driven recurrent neural networks. Connect. Sci. 5(3 & 4), 307-337.
    • (1993) Connect. Sci. , vol.5 , Issue.3-4 , pp. 307-337
    • Giles, C.1    Omlin, C.2
  • 7
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • Giles, C., Miller, C., Chen, D., Chen, H., Sun, G., and Lee, Y. 1992. Learning and extracting finite state automata with second-order recurrent neural networks. Neural Comp. 4(3), 380.
    • (1992) Neural Comp. , vol.4 , Issue.3 , pp. 380
    • Giles, C.1    Miller, C.2    Chen, D.3    Chen, H.4    Sun, G.5    Lee, Y.6
  • 8
    • 0030125824 scopus 로고    scopus 로고
    • Insertion of finite state automata in recurrent radial basis function networks
    • in press
    • Gori, M., Maggini, M., and Soda, G. 1996. Insertion of finite state automata in recurrent radial basis function networks. Machine Learning, in press.
    • (1996) Machine Learning
    • Gori, M.1    Maggini, M.2    Soda, G.3
  • 10
    • 0002024453 scopus 로고
    • Bounds on the complexity of recurrent neural network implementations of finite state machines
    • J. Cowen, G. Tesauro, and J. Alspector, eds., Morgan Kaufmann, San Mateo, CA
    • Horne, B., and Hush, D. 1994. Bounds on the complexity of recurrent neural network implementations of finite state machines. In Advances in Neural Information Processing Systems 6, J. Cowen, G. Tesauro, and J. Alspector, eds., pp. 359-366. Morgan Kaufmann, San Mateo, CA.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 359-366
    • Horne, B.1    Hush, D.2
  • 13
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • Pollack, J. 1991. The induction of dynamical recognizers. Machine Learning 7, 227-252.
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pollack, J.1
  • 14
    • 0001395132 scopus 로고
    • Graded state machine: The representation of temporal contingencies in simple recurrent networks
    • Servan-Schreiber, D., Cleeremans, A., and McClelland, J. 1991. Graded state machine: The representation of temporal contingencies in simple recurrent networks. Machine Learning 7, 161.
    • (1991) Machine Learning , vol.7 , pp. 161
    • Servan-Schreiber, D.1    Cleeremans, A.2    McClelland, J.3
  • 15
    • 85033767654 scopus 로고
    • Private communication
    • Tino, P. 1994. Private communication.
    • (1994)
    • Tino, P.1
  • 16
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • Watrous, R., and Kuhn, G. 1992. Induction of finite-state languages using second-order recurrent networks. Neural Comp. 4(3), 406.
    • (1992) Neural Comp. , vol.4 , Issue.3 , pp. 406
    • Watrous, R.1    Kuhn, G.2
  • 17
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • Zeng, Z., Goodman, R., and Smyth, P. 1993. Learning finite state machines with self-clustering recurrent networks. Neural Comp. 5(6), 976-990.
    • (1993) Neural Comp. , vol.5 , Issue.6 , pp. 976-990
    • Zeng, Z.1    Goodman, R.2    Smyth, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.