메뉴 건너뛰기




Volumn 13, Issue 6, 2000, Pages 667-680

Stable behavior in a recurrent neural network for a finite state machine

Author keywords

Bayesian learning; Finite state machine; Internal representation; Recurrent neural network; Stability

Indexed keywords

ASYMPTOTIC STABILITY; COMPUTER SIMULATION; FINITE AUTOMATA; FUNCTIONS; LEARNING SYSTEMS; PROBABILITY;

EID: 0034233325     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(00)00037-X     Document Type: Article
Times cited : (11)

References (33)
  • 1
    • 0040973442 scopus 로고
    • An algebraic framework to represent finite state machines in single-layer recurrent neural networks
    • Alquezar R., Sanfeliu A. An algebraic framework to represent finite state machines in single-layer recurrent neural networks. Neural Computation. 7:1995;931-949.
    • (1995) Neural Computation , vol.7 , pp. 931-949
    • Alquezar, R.1    Sanfeliu, A.2
  • 2
    • 84902201900 scopus 로고    scopus 로고
    • Annealed RNN learning of finite state automata
    • Arai, K., & Nakano, R., (1996). Annealed RNN learning of finite state automata. In Proceedings of ICANN (pp. 519-524).
    • (1996) In Proceedings of ICANN , pp. 519-524
    • Arai, K.1    Nakano, R.2
  • 3
    • 0002427485 scopus 로고    scopus 로고
    • Adaptive β scheduling learning method of finite state automata by recurrent neural networks
    • Arai, K., & Nakano, R., (1996). Adaptive β scheduling learning method of finite state automata by recurrent neural networks. In Proceedings of ICONIP, Vol. 1 (pp. 351-354).
    • (1996) In Proceedings of ICONIP , vol.1 , pp. 351-354
    • Arai, K.1    Nakano, R.2
  • 4
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y., Simard P., Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Neural Networks. 5:(2):1994;157-166.
    • (1994) IEEE Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 6
    • 0000392660 scopus 로고    scopus 로고
    • Analysis of dynamical recognizers
    • Blair A.D., Pollack J.B. Analysis of dynamical recognizers. Neural Computation. 9:1997;1127-1142.
    • (1997) Neural Computation , vol.9 , pp. 1127-1142
    • Blair, A.D.1    Pollack, J.B.2
  • 7
    • 0034268994 scopus 로고    scopus 로고
    • Stable encoding of finite-state machines in discrete neural nets with sigmoidal units
    • (in press)
    • Carrasco R.C., Forcada M.L., Neco R.P. Stable encoding of finite-state machines in discrete neural nets with sigmoidal units. Neural Computation. 2000;. (in press).
    • (2000) Neural Computation
    • Carrasco, R.C.1    Forcada, M.L.2    Neco, R.P.3
  • 8
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • Casey M. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation. 8:1996;1135-1178.
    • (1996) Neural Computation , vol.8 , pp. 1135-1178
    • Casey, M.1
  • 10
    • 0003130308 scopus 로고
    • A unified gradient-descent/clustering architecture for finite state machine induction
    • Das S., Mozer M.C. A unified gradient-descent/clustering architecture for finite state machine induction. Advances in Neural Information Processing Systems. 6:1994;19-26.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 19-26
    • Das, S.1    Mozer, M.C.2
  • 11
    • 0031915593 scopus 로고    scopus 로고
    • Dynamic on-line clustering and state extraction: An approach to symbolic learning
    • Das S., Mozer M. Dynamic on-line clustering and state extraction: an approach to symbolic learning. Neural Networks. 11:(1):1998;53-64.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 53-64
    • Das, S.1    Mozer, M.2
  • 12
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science. 14:1990;179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 13
    • 0003979694 scopus 로고
    • Learning the initial state of a second-order recurrent neural network during regular-language inference
    • Forcada M.L., Carrrasco R.C. Learning the initial state of a second-order recurrent neural network during regular-language inference. Neural Computation. 7:(5):1995;923-930.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 923-930
    • Forcada, M.L.1    Carrrasco, R.C.2
  • 14
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite state automata in recurrent radial basis function networks
    • Frasconi P., Gori M., Maggini M., Soda G. Representation of finite state automata in recurrent radial basis function networks. Machine Learning. 23:1996;5-32.
    • (1996) Machine Learning , vol.23 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 16
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • Giles C.L., Miller C.B., Chen D., Chen H.H., Sun G.Z., Lee Y.C. Learning and extracting finite state automata with second-order recurrent neural networks. Neural Computation. 4:1992;393-405.
    • (1992) Neural Computation , vol.4 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 18
    • 0028424868 scopus 로고
    • First-order versus second-order single-layer recurrent neural networks
    • Goudreau M.W., Giles C.L., Chakradhar S.T., Chen D. First-order versus second-order single-layer recurrent neural networks. IEEE Neural Networks. 5:(3):1994;511-513.
    • (1994) IEEE Neural Networks , vol.5 , Issue.3 , pp. 511-513
    • Goudreau, M.W.1    Giles, C.L.2    Chakradhar, S.T.3    Chen, D.4
  • 21
    • 0002046921 scopus 로고
    • Fool's gold: Extracting finite state machines from recurrent neural network dynamics
    • Kolen J.R. Fool's gold: extracting finite state machines from recurrent neural network dynamics. Advances in Neural Information Processing Systems. 6:1994;508-515.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 508-515
    • Kolen, J.R.1
  • 22
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Computation. 4:1992;415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 23
    • 0006311788 scopus 로고
    • First-order recurrent neural networks and deterministic finite state automata
    • Manolis P., Fenelli R. First-order recurrent neural networks and deterministic finite state automata. Neural Computation. 6:1994;1155-1173.
    • (1994) Neural Computation , vol.6 , pp. 1155-1173
    • Manolis, P.1    Fenelli, R.2
  • 25
    • 0030585201 scopus 로고    scopus 로고
    • Stable encoding of large finite-state automata in recurrent neural networks with sigmoidal discriminant
    • Omlin C.W., Giles C.L. Stable encoding of large finite-state automata in recurrent neural networks with sigmoidal discriminant. Neural Computation. 8:1996;675-696.
    • (1996) Neural Computation , vol.8 , pp. 675-696
    • Omlin, C.W.1    Giles, C.L.2
  • 26
    • 0030286473 scopus 로고    scopus 로고
    • Constructing deterministic finite-state automata in recurrent neural networks
    • Omlin C.W., Giles C.L. Constructing deterministic finite-state automata in recurrent neural networks. Journal of the ACM. 43:(6):1996;937-972.
    • (1996) Journal of the ACM , vol.43 , Issue.6 , pp. 937-972
    • Omlin, C.W.1    Giles, C.L.2
  • 27
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • Pallack J.B. The induction of dynamical recognizers. Machine Learning. 7:1991;227-252.
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pallack, J.B.1
  • 28
    • 0040726637 scopus 로고
    • Learning and extracting initial Mealy automata with a modular neural network model
    • Tino P., Sajda J. Learning and extracting initial Mealy automata with a modular neural network model. Neural Computation. 7:1995;822-844.
    • (1995) Neural Computation , vol.7 , pp. 822-844
    • Tino, P.1    Sajda, J.2
  • 30
    • 0001905135 scopus 로고
    • On the asymptotic behavior of posterior distribution
    • Walker A.M. On the asymptotic behavior of posterior distribution. Journal of the Royal Statistical Society, B. 31:(1):1969;80-88.
    • (1969) Journal of the Royal Statistical Society, B , vol.31 , Issue.1 , pp. 80-88
    • Walker, A.M.1
  • 31
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • Watrous R., Kuhn G.M. Induction of finite-state languages using second-order recurrent networks. Neural Computation. 4:1992;406-414.
    • (1992) Neural Computation , vol.4 , pp. 406-414
    • Watrous, R.1    Kuhn, G.M.2
  • 32
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.L., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation. 1:(2):1989;270-380.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-380
    • Williams, R.L.1    Zipser, D.2
  • 33
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • Zeng Z., Goodman R.M., Smyth P. Learning finite state machines with self-clustering recurrent networks. Neural Computation. 5:1993;976-990.
    • (1993) Neural Computation , vol.5 , pp. 976-990
    • Zeng, Z.1    Goodman, R.M.2    Smyth, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.