메뉴 건너뛰기




Volumn 15, Issue 2, 2005, Pages 153-162

The structure and function of the bacterial chromosome

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; BACTERIAL DNA; BACTERIAL RNA; DNA TOPOISOMERASE; INTEGRATION HOST FACTOR; RNA POLYMERASE;

EID: 15744376527     PISSN: 0959437X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.gde.2005.01.001     Document Type: Review
Times cited : (50)

References (88)
  • 1
    • 0032514107 scopus 로고    scopus 로고
    • Osmotic compaction of supercoiled DNA into a bacterial nucleoid
    • T. Odijk Osmotic compaction of supercoiled DNA into a bacterial nucleoid Biophys Chem 73 1998 23 29
    • (1998) Biophys Chem , vol.73 , pp. 23-29
    • Odijk, T.1
  • 2
    • 0015506478 scopus 로고
    • On the structure of the folded chromosome of Escherichia coli
    • A. Worcel, and E. Burgi On the structure of the folded chromosome of Escherichia coli J Mol Biol 71 1972 127 147
    • (1972) J Mol Biol , vol.71 , pp. 127-147
    • Worcel, A.1    Burgi, E.2
  • 3
    • 0343240577 scopus 로고
    • Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling
    • R.R. Sinden, and D.E. Pettijohn Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling Proc Natl Acad Sci USA 78 1981 224 228
    • (1981) Proc Natl Acad Sci USA , vol.78 , pp. 224-228
    • Sinden, R.R.1    Pettijohn, D.E.2
  • 4
    • 0016018740 scopus 로고
    • Electron microscopic studies on the folded chromosome of Escherichia coli
    • H. Delius, and A. Worcel Electron microscopic studies on the folded chromosome of Escherichia coli Cold Spring Harb Symp Quant Biol 38 1974 53 58
    • (1974) Cold Spring Harb Symp Quant Biol , vol.38 , pp. 53-58
    • Delius, H.1    Worcel, A.2
  • 5
    • 0041817952 scopus 로고    scopus 로고
    • Effect of varying the supercoiling of DNA on transcription and its regulation
    • H.M. Lim, D.E. Lewis, H.J. Lee, M. Liu, and S. Adhya Effect of varying the supercoiling of DNA on transcription and its regulation Biochemistry 42 2003 10718 10725
    • (2003) Biochemistry , vol.42 , pp. 10718-10725
    • Lim, H.M.1    Lewis, D.E.2    Lee, H.J.3    Liu, M.4    Adhya, S.5
  • 6
    • 3142774839 scopus 로고    scopus 로고
    • Topological domain structure of the Escherichia coli chromosome
    • L. Postow, C.D. Hardy, J. Arsuaga, and N.R. Cozzarelli Topological domain structure of the Escherichia coli chromosome Genes Dev 18 2004 1766 1779 This study elegantly clarifies the topological organization of the E. coli chromosome. The authors show that chromatin is generally accessible for restriction enzymes in vivo. Subsequently, they use transient expression of the restriction endonuclease SwaI to introduce double-strand breaks and thereby relax supercoils in the chromosome of live E. coli cells. The consequential spread of relaxation is quantified by analyzing changes in the transcription of several hundred genes known to be affected by the level of supercoiling. Comparing the results of Monte Carlo simulations of different models for chromosome topology with the transcriptional profiles obtained, the authors conclude that the barriers of topological domains are fluid and stochastically distributed over the chromosome. The mean length of domains is 10 kb and this varies exponentially. These results are further corroborated by analyzing electron microscopic images of gently isolated nucleoids.
    • (2004) Genes Dev , vol.18 , pp. 1766-1779
    • Postow, L.1    Hardy, C.D.2    Arsuaga, J.3    Cozzarelli, N.R.4
  • 7
    • 0023014127 scopus 로고
    • Complete enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome
    • B.E. Funnell, T.A. Baker, and A. Kornberg Complete enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome J Biol Chem 261 1986 5616 5624
    • (1986) J Biol Chem , vol.261 , pp. 5616-5624
    • Funnell, B.E.1    Baker, T.A.2    Kornberg, A.3
  • 8
    • 0025285536 scopus 로고
    • Bending and supercoiling of DNA at the attachment site of bacteriophage lambda
    • H.A. Nash Bending and supercoiling of DNA at the attachment site of bacteriophage lambda Trends Biochem Sci 15 1990 222 227
    • (1990) Trends Biochem Sci , vol.15 , pp. 222-227
    • Nash, H.A.1
  • 9
    • 0030014783 scopus 로고    scopus 로고
    • DNA topoisomerases
    • J.C. Wang DNA topoisomerases Annu Rev Biochem 65 1996 635 692
    • (1996) Annu Rev Biochem , vol.65 , pp. 635-692
    • Wang, J.C.1
  • 10
    • 0017045430 scopus 로고
    • Electron microscopy of membrane-free folded chromosomes from Escherichia coli
    • R. Kavenoff, and B.C. Bowen Electron microscopy of membrane-free folded chromosomes from Escherichia coli Chromosoma 59 1976 89 101
    • (1976) Chromosoma , vol.59 , pp. 89-101
    • Kavenoff, R.1    Bowen, B.C.2
  • 11
    • 0017235595 scopus 로고
    • Electron microscopy of membrane-associated folded chromosomes of Escherichia coli
    • R. Kavenoff, and O.A. Ryder Electron microscopy of membrane-associated folded chromosomes of Escherichia coli Chromosoma 55 1976 13 25
    • (1976) Chromosoma , vol.55 , pp. 13-25
    • Kavenoff, R.1    Ryder, O.A.2
  • 12
    • 0035084878 scopus 로고    scopus 로고
    • The form of chromosomal DNA molecules in bacterial cells
    • A.J. Bendich The form of chromosomal DNA molecules in bacterial cells Biochimie 83 2001 177 186
    • (2001) Biochimie , vol.83 , pp. 177-186
    • Bendich, A.J.1
  • 13
    • 0029863159 scopus 로고    scopus 로고
    • Surveying a supercoil domain by using the γδ resolution system in Salmonella typhimurium
    • N.P. Higgins, X. Yang, Q. Fu, and J.R. Roth Surveying a supercoil domain by using the γδ resolution system in Salmonella typhimurium J Bacteriol 178 1996 2825 2835
    • (1996) J Bacteriol , vol.178 , pp. 2825-2835
    • Higgins, N.P.1    Yang, X.2    Fu, Q.3    Roth, J.R.4
  • 14
    • 1542618333 scopus 로고    scopus 로고
    • Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome
    • S. Deng, R.A. Stein, and N.P. Higgins Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome Proc Natl Acad Sci USA 101 2004 3398 3403 Using the efficiency of γδ resolvase-mediated site-specific recombination to detect changes in chromosomal supercoil dynamics, the authors demonstrate that transcription of highly expressed genes can create new domain barriers in vivo.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 3398-3403
    • Deng, S.1    Stein, R.A.2    Higgins, N.P.3
  • 15
    • 0016000696 scopus 로고
    • RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling
    • D.E. Pettijohn, and R. Hecht RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling Cold Spring Harb Symp Quant Biol 38 1974 31 41
    • (1974) Cold Spring Harb Symp Quant Biol , vol.38 , pp. 31-41
    • Pettijohn, D.E.1    Hecht, R.2
  • 16
    • 0036670336 scopus 로고    scopus 로고
    • ParB-stimulated nucleotide exchange regulates a switch in functionally distinct para activities
    • J. Easter Jr., and J.W. Gober ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities Mol Cell 10 2002 427 434
    • (2002) Mol Cell , vol.10 , pp. 427-434
    • Easter Jr., J.1    Gober, J.W.2
  • 17
    • 0032489548 scopus 로고    scopus 로고
    • Identification and characterization of a bacterial chromosome partitioning site
    • D.C. Lin, and A.D. Grossman Identification and characterization of a bacterial chromosome partitioning site Cell 92 1998 675 685
    • (1998) Cell , vol.92 , pp. 675-685
    • Lin, D.C.1    Grossman, A.D.2
  • 18
    • 0037462540 scopus 로고    scopus 로고
    • RacA, a bacterial protein that anchors chromosomes to the cell poles
    • S. Ben-Yehuda, D.Z. Rudner, and R. Losick RacA, a bacterial protein that anchors chromosomes to the cell poles Science 299 2003 532 536 The authors describe the functional characterization of a novel protein, named RacA, which is transiently produced in sporulating B. subtilis cells. Using a fusion to green fluorescent protein, the authors show that the protein localizes to the cell poles in a DivIVA-dependent manner and, additionally, exhibits unspecific binding throughout the nucleoid. Chromatin immunoprecipitation experiments further demonstrate that RacA specifically interacts with several sites in the origin-proximal region of the chromosome. Mutation of the protein prevents remodeling of the nucleoid into an axial filament. Furthermore, it frequently leads to the formation of anucleate forespores, which correlates with the deficiency to localize the origin region in the forespore compartment. Induced expression of racA in vegetatively growing cells shifts the localization of the origin region from the quarter position to the cell pole. The authors, therefore, conclude that RacA forms a nucleoprotein complex that tethers the nucleoid to the cell poles during sporulation and thereby directs DNA into the forespore compartment.
    • (2003) Science , vol.299 , pp. 532-536
    • Ben-Yehuda, S.1    Rudner, D.Z.2    Losick, R.3
  • 19
    • 0037169328 scopus 로고    scopus 로고
    • FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases
    • L. Aussel, F.X. Barre, M. Aroyo, A. Stasiak, A.Z. Stasiak, and D. Sherratt FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases Cell 108 2002 195 205
    • (2002) Cell , vol.108 , pp. 195-205
    • Aussel, L.1    Barre, F.X.2    Aroyo, M.3    Stasiak, A.4    Stasiak, A.Z.5    Sherratt, D.6
  • 20
    • 0025647116 scopus 로고
    • Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers
    • E.L. Zechiedrich, and N. Osheroff Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers EMBO J 9 1990 4555 4562
    • (1990) EMBO J , vol.9 , pp. 4555-4562
    • Zechiedrich, E.L.1    Osheroff, N.2
  • 21
    • 0031712188 scopus 로고    scopus 로고
    • Gyrase and Topo IV modulate chromosome domain size in vivo
    • P. Staczek, and N.P. Higgins Gyrase and Topo IV modulate chromosome domain size in vivo Mol Microbiol 29 1998 1435 1448
    • (1998) Mol Microbiol , vol.29 , pp. 1435-1448
    • Staczek, P.1    Higgins, N.P.2
  • 22
    • 0017889516 scopus 로고
    • Association of the folded chromosome with the cell envelope of Escherichia coli: Nature of the membrane-associated DNA
    • K. Drlica, E. Burgi, and A. Worcel Association of the folded chromosome with the cell envelope of Escherichia coli: nature of the membrane-associated DNA J Bacteriol 134 1978 1108 1116
    • (1978) J Bacteriol , vol.134 , pp. 1108-1116
    • Drlica, K.1    Burgi, E.2    Worcel, A.3
  • 23
    • 0344020676 scopus 로고
    • Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli
    • B.Y. Yung, and A. Kornberg Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli Proc Natl Acad Sci USA 85 1988 7202 7205
    • (1988) Proc Natl Acad Sci USA , vol.85 , pp. 7202-7205
    • Yung, B.Y.1    Kornberg, A.2
  • 24
    • 0142093602 scopus 로고    scopus 로고
    • SetB: An integral membrane protein that affects chromosome segregation in Escherichia coli
    • O. Espeli, P. Nurse, C. Levine, C. Lee, and K.J. Marians SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli Mol Microbiol 50 2003 495 509
    • (2003) Mol Microbiol , vol.50 , pp. 495-509
    • Espeli, O.1    Nurse, P.2    Levine, C.3    Lee, C.4    Marians, K.J.5
  • 25
    • 0036050398 scopus 로고    scopus 로고
    • The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation
    • C.L. Woldringh The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation Mol Microbiol 45 2002 17 29
    • (2002) Mol Microbiol , vol.45 , pp. 17-29
    • Woldringh, C.L.1
  • 26
    • 0024563782 scopus 로고
    • Formation of supercoiling domains in plasmid pBR322
    • J.K. Lodge, T. Kazic, and D.E. Berg Formation of supercoiling domains in plasmid pBR322 J Bacteriol 171 1989 2181 2187
    • (1989) J Bacteriol , vol.171 , pp. 2181-2187
    • Lodge, J.K.1    Kazic, T.2    Berg, D.E.3
  • 27
    • 0027467896 scopus 로고
    • Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: A mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I
    • A.S. Lynch, and J.C. Wang Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I J Bacteriol 175 1993 1645 1655
    • (1993) J Bacteriol , vol.175 , pp. 1645-1655
    • Lynch, A.S.1    Wang, J.C.2
  • 28
    • 0023433855 scopus 로고
    • Supercoiling of the DNA template during transcription
    • L.F. Liu, and J.C. Wang Supercoiling of the DNA template during transcription Proc Natl Acad Sci USA 84 1987 7024 7027
    • (1987) Proc Natl Acad Sci USA , vol.84 , pp. 7024-7027
    • Liu, L.F.1    Wang, J.C.2
  • 29
    • 9144219714 scopus 로고    scopus 로고
    • Coupling DNA supercoiling to transcription in defined protein systems
    • F. Leng, L. Amado, and R. McMacken Coupling DNA supercoiling to transcription in defined protein systems J Biol Chem 279 2004 47564 47571
    • (2004) J Biol Chem , vol.279 , pp. 47564-47571
    • Leng, F.1    Amado, L.2    McMacken, R.3
  • 31
    • 0034666271 scopus 로고    scopus 로고
    • H-NS mediated compaction of DNA visualised by atomic force microscopy
    • R.T. Dame, C. Wyman, and N. Goosen H-NS mediated compaction of DNA visualised by atomic force microscopy Nucleic Acids Res 28 2000 3504 3510
    • (2000) Nucleic Acids Res , vol.28 , pp. 3504-3510
    • Dame, R.T.1    Wyman, C.2    Goosen, N.3
  • 32
    • 3042845898 scopus 로고    scopus 로고
    • The bacterial condensin MukBEF compacts DNA into a repetitive, stable structure
    • R.B. Case, Y.P. Chang, S.B. Smith, J. Gore, N.R. Cozzarelli, and C. Bustamante The bacterial condensin MukBEF compacts DNA into a repetitive, stable structure Science 305 2004 222 227 Using single-molecule techniques, the authors clarify the mechanism of MukBEF-mediated DNA condensation. They show that MukBEF cooperatively polymerizes on DNA in a process that requires the binding but not the hydrolysis of ATP, thereby significantly reducing the end-to-end distance of the double strand. Forced re-extension of a compacted DNA molecule occurs in several individual, quantized opening events. The mean length of the DNA segments released in each step is 170 bp but this is highly variable. Moreover, repeated condensation and extension of a defined MukBEF-covered DNA molecule yields a reproducible pattern of step sizes. These data suggest that MukBEF stably interacts with DNA in an open, V-shaped conformation and then condenses the double strand by closure of the two arms, which brings together the terminal DNA-binding domains. Different opening angles at the time of DNA binding might thereby account for the observed variability in the length of the DNA segments spanned by individual MukBEF trimers.
    • (2004) Science , vol.305 , pp. 222-227
    • Case, R.B.1    Chang, Y.P.2    Smith, S.B.3    Gore, J.4    Cozzarelli, N.R.5    Bustamante, C.6
  • 33
    • 1942436944 scopus 로고    scopus 로고
    • Unequal access of chromosomal regions to each other in Salmonella: Probing chromosome structure with phage λ integrase-mediated long-range rearrangements
    • N. Garcia-Russell, T.G. Harmon, T.Q. Le, N.H. Amaladas, R.D. Mathewson, and A.M. Segall Unequal access of chromosomal regions to each other in Salmonella: probing chromosome structure with phage λ integrase-mediated long-range rearrangements Mol Microbiol 52 2004 329 344
    • (2004) Mol Microbiol , vol.52 , pp. 329-344
    • Garcia-Russell, N.1    Harmon, T.G.2    Le T., Q.3    Amaladas, N.H.4    Mathewson, R.D.5    Segall, A.M.6
  • 34
    • 9144264275 scopus 로고    scopus 로고
    • Macrodomain organization of the Escherichia coli chromosome
    • M. Valens, S. Penaud, M. Rossignol, F. Cornet, and F. Boccard Macrodomain organization of the Escherichia coli chromosome EMBO J 23 2004 4330 4341 The authors use the site-specific recombination system of bacteriaphage λ to determine the probability of collision between different sites of the E. coli chromosome. They find that efficient interaction between two loci is only possible within defined subregions of the chromosome - so-called macrodomains. Two of the regions identified in this way are identical with the Ori and Ter domains detected by Niki et al. [41] using the FISH method. Furthermore, it is shown that interaction between sister chromatids is rare, indicating rapid segregation of DNA daughter strands after replication.
    • (2004) EMBO J , vol.23 , pp. 4330-4341
    • Valens, M.1    Penaud, S.2    Rossignol, M.3    Cornet, F.4    Boccard, F.5
  • 35
    • 0030461543 scopus 로고    scopus 로고
    • In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition
    • C.C. Robinett, A. Straight, G. Li, C. Willhelm, G. Sudlow, A. Murray, and A.S. Belmont In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition J Cell Biol 135 1996 1685 1700
    • (1996) J Cell Biol , vol.135 , pp. 1685-1700
    • Robinett, C.C.1    Straight, A.2    Li, G.3    Willhelm, C.4    Sudlow, G.5    Murray, A.6    Belmont, A.S.7
  • 36
    • 0030901736 scopus 로고    scopus 로고
    • Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis
    • C.D. Webb, A. Teleman, S. Gordon, A. Straight, A. Belmont, D.C. Lin, A.D. Grossman, A. Wright, and R. Losick Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis Cell 88 1997 667 674
    • (1997) Cell , vol.88 , pp. 667-674
    • Webb, C.D.1    Teleman, A.2    Gordon, S.3    Straight, A.4    Belmont, A.5    Lin, D.C.6    Grossman, A.D.7    Wright, A.8    Losick, R.9
  • 38
    • 0032053854 scopus 로고    scopus 로고
    • Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning
    • H. Niki, and S. Hiraga Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning Genes Dev 12 1998 1036 1045
    • (1998) Genes Dev , vol.12 , pp. 1036-1045
    • Niki, H.1    Hiraga, S.2
  • 39
    • 0032875384 scopus 로고    scopus 로고
    • The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation
    • R.B. Jensen, and L. Shapiro The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation Proc Natl Acad Sci USA 96 1999 10661 10666
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 10661-10666
    • Jensen, R.B.1    Shapiro, L.2
  • 41
    • 0034650256 scopus 로고    scopus 로고
    • Dynamic organization of chromosomal DNA in Escherichia coli
    • H. Niki, Y. Yamaichi, and S. Hiraga Dynamic organization of chromosomal DNA in Escherichia coli Genes Dev 14 2000 212 223
    • (2000) Genes Dev , vol.14 , pp. 212-223
    • Niki, H.1    Yamaichi, Y.2    Hiraga, S.3
  • 42
    • 3042548402 scopus 로고    scopus 로고
    • Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication
    • 1 phase cells, the authors find that every locus has a defined subcellular address. The position of any given site along the long-axis of the cell shows a strictly linear correlation with its physical distance from the origin of replication. Moreover, time-lapse experiments reveal that newly replicated loci are immediately segregated and rapidly moved to their final destination in the incipient daughter cells. These data demonstrate that the nucleoid exhibits a defined higher-order structure that is maintained and propagated in the course of growth and cell division.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 9257-9262
    • Viollier, P.H.1    Thanbichler, M.2    McGrath, P.T.3    West, L.4    Meewan, M.5    McAdams, H.H.6    Shapiro, L.7
  • 43
    • 3042599315 scopus 로고    scopus 로고
    • Linear ordering and dynamic segregation of the bacterial chromosome
    • A.M. Breier, and N.R. Cozzarelli Linear ordering and dynamic segregation of the bacterial chromosome Proc Natl Acad Sci USA 101 2004 9175 9176
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 9175-9176
    • Breier, A.M.1    Cozzarelli, N.R.2
  • 44
    • 0031834480 scopus 로고    scopus 로고
    • Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis
    • C.D. Webb, P.L. Graumann, J.A. Kahana, A.A. Teleman, P.A. Silver, and R. Losick Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis Mol Microbiol 28 1998 883 892
    • (1998) Mol Microbiol , vol.28 , pp. 883-892
    • Webb, C.D.1    Graumann, P.L.2    Kahana, J.A.3    Teleman, A.A.4    Silver, P.A.5    Losick, R.6
  • 45
    • 0032707571 scopus 로고    scopus 로고
    • Cellular localization of oriC during the cell cycle of Escherichia coli as analyzed by fluorescent in situ hybridization
    • M. Roos, A.B. van Geel, M.E. Aarsman, J.T. Veuskens, C.L. Woldringh, and N. Nanninga Cellular localization of oriC during the cell cycle of Escherichia coli as analyzed by fluorescent in situ hybridization Biochimie 81 1999 797 802
    • (1999) Biochimie , vol.81 , pp. 797-802
    • Roos, M.1    Van Geel, A.B.2    Aarsman, M.E.3    Veuskens, J.T.4    Woldringh, C.L.5    Nanninga, N.6
  • 46
    • 0036433665 scopus 로고    scopus 로고
    • The segregation of the Escherichia coli origin and terminus of replication
    • Y. Li, K. Sergueev, and S. Austin The segregation of the Escherichia coli origin and terminus of replication Mol Microbiol 46 2002 985 996
    • (2002) Mol Microbiol , vol.46 , pp. 985-996
    • Li, Y.1    Sergueev, K.2    Austin, S.3
  • 47
    • 0035694468 scopus 로고    scopus 로고
    • Visualization of mismatch repair in bacterial cells
    • B.T. Smith, A.D. Grossman, and G.C. Walker Visualization of mismatch repair in bacterial cells Mol Cell 8 2001 1197 1206
    • (2001) Mol Cell , vol.8 , pp. 1197-1206
    • Smith, B.T.1    Grossman, A.D.2    Walker, G.C.3
  • 48
    • 0035801637 scopus 로고    scopus 로고
    • A moving DNA replication factory in Caulobacter crescentus
    • R.B. Jensen, S.C. Wang, and L. Shapiro A moving DNA replication factory in Caulobacter crescentus EMBO J 20 2001 4952 4963
    • (2001) EMBO J , vol.20 , pp. 4952-4963
    • Jensen, R.B.1    Wang, S.C.2    Shapiro, L.3
  • 49
    • 0032553470 scopus 로고    scopus 로고
    • Localization of bacterial DNA polymerase: Evidence for a factory model of replication
    • K.P. Lemon, and A.D. Grossman Localization of bacterial DNA polymerase: evidence for a factory model of replication Science 282 1998 1516 1519
    • (1998) Science , vol.282 , pp. 1516-1519
    • Lemon, K.P.1    Grossman, A.D.2
  • 50
    • 0034086581 scopus 로고    scopus 로고
    • Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli
    • S. Hiraga, C. Ichinose, T. Onogi, H. Niki, and M. Yamazoe Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli Genes Cells 5 2000 327 341
    • (2000) Genes Cells , vol.5 , pp. 327-341
    • Hiraga, S.1    Ichinose, C.2    Onogi, T.3    Niki, H.4    Yamazoe, M.5
  • 51
    • 0035725457 scopus 로고    scopus 로고
    • Sister chromosome cohesion of Escherichia coli
    • Y. Sunako, T. Onogi, and S. Hiraga Sister chromosome cohesion of Escherichia coli Mol Microbiol 42 2001 1233 1241
    • (2001) Mol Microbiol , vol.42 , pp. 1233-1241
    • Sunako, Y.1    Onogi, T.2    Hiraga, S.3
  • 52
    • 0041853780 scopus 로고    scopus 로고
    • Spatial and temporal organization of replicating Escherichia coli chromosomes
    • I.F. Lau, S.R. Filipe, B. Soballe, O.A. Okstad, F.X. Barre, and D.J. Sherratt Spatial and temporal organization of replicating Escherichia coli chromosomes Mol Microbiol 49 2003 731 743 The authors investigate the localization of the origin and terminus of replication in live E. coli cells. They found that the origin regions are rapidly separated after duplication. Newly replicated termini are frequently found associated with each other on one side of the nascent division septum. Their segregation occurs immediately before cell division and involves transport of one of the termini through the closing septum.
    • (2003) Mol Microbiol , vol.49 , pp. 731-743
    • Lau, I.F.1    Filipe, S.R.2    Soballe, B.3    Okstad, O.A.4    Barre, F.X.5    Sherratt, D.J.6
  • 53
    • 0035138267 scopus 로고    scopus 로고
    • The replicated ftsQAZ and minB chromosomal regions of Escherichia coli segregate on average in line with nucleoid movement
    • M. Roos, A.B. van Geel, M.E. Aarsman, J.T. Veuskens, C.L. Woldringh, and N. Nanninga The replicated ftsQAZ and minB chromosomal regions of Escherichia coli segregate on average in line with nucleoid movement Mol Microbiol 39 2001 633 640
    • (2001) Mol Microbiol , vol.39 , pp. 633-640
    • Roos, M.1    Van Geel, A.B.2    Aarsman, M.E.3    Veuskens, J.T.4    Woldringh, C.L.5    Nanninga, N.6
  • 54
    • 0034509678 scopus 로고    scopus 로고
    • Movement of replicating DNA through a stationary replisome
    • K.P. Lemon, and A.D. Grossman Movement of replicating DNA through a stationary replisome Mol Cell 6 2000 1321 1330
    • (2000) Mol Cell , vol.6 , pp. 1321-1330
    • Lemon, K.P.1    Grossman, A.D.2
  • 55
    • 6344241323 scopus 로고    scopus 로고
    • The midcell replication factory in Bacillus subtilis is highly mobile: Implications for coordinating chromosome replication with other cell cycle events
    • M.D. Migocki, P.J. Lewis, R.G. Wake, and E.J. Harry The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events Mol Microbiol 54 2004 452 463
    • (2004) Mol Microbiol , vol.54 , pp. 452-463
    • Migocki, M.D.1    Lewis, P.J.2    Wake, R.G.3    Harry, E.J.4
  • 56
    • 0242606194 scopus 로고    scopus 로고
    • Segregation of the Escherichia coli chromosome terminus
    • Y. Li, B. Youngren, K. Sergueev, and S. Austin Segregation of the Escherichia coli chromosome terminus Mol Microbiol 50 2003 825 834 The authors demonstrate that the terminal region of the E. coli chromosome is moved to the future site of cell division in the course of replication. Segregation of the small terminal domain roughly centered on the dif sites coincides with cell division and is dependent on the C-terminal domain of the septum component FtsK.
    • (2003) Mol Microbiol , vol.50 , pp. 825-834
    • Li, Y.1    Youngren, B.2    Sergueev, K.3    Austin, S.4
  • 57
    • 3242699635 scopus 로고    scopus 로고
    • Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment
    • O.A. Saleh, C. Perals, F.X. Barre, and J.F. Allemand Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment EMBO J 23 2004 2430 2439 Using a single-molecule approach, it is shown that the C-terminal domain of FtsK acts as an efficient DNA translocase with a maximum speed of ∼6.7 kb/s. The direction of translocation is found to be spontaneously reversible, which argues against the model that DNA sequence is the main determinant for directionality in vivo.
    • (2004) EMBO J , vol.23 , pp. 2430-2439
    • Saleh, O.A.1    Perals, C.2    Barre, F.X.3    Allemand, J.F.4
  • 58
    • 0036308133 scopus 로고    scopus 로고
    • A dual role for the FtsK protein in Escherichia coli chromosome segregation
    • H. Capiaux, C. Lesterlin, K. Perals, J.M. Louarn, and F. Cornet A dual role for the FtsK protein in Escherichia coli chromosome segregation EMBO Rep 3 2002 532 536
    • (2002) EMBO Rep , vol.3 , pp. 532-536
    • Capiaux, H.1    Lesterlin, C.2    Perals, K.3    Louarn, J.M.4    Cornet, F.5
  • 59
    • 2442543553 scopus 로고    scopus 로고
    • Asymmetric activation of Xer site-specific recombination by FtsK
    • T.H. Massey, L. Aussel, F.X. Barre, and D.J. Sherratt Asymmetric activation of Xer site-specific recombination by FtsK EMBO Rep 5 2004 399 404 This study shows that ATP hydrolysis by the C-terminal domain of FtsK is involved in the local activation of XerCD-dependent site-specific recombination at the terminal dif sites by directly changing the catalytic state of XerD.
    • (2004) EMBO Rep , vol.5 , pp. 399-404
    • Massey, T.H.1    Aussel, L.2    Barre, F.X.3    Sherratt, D.J.4
  • 60
    • 0242582268 scopus 로고    scopus 로고
    • A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV
    • O. Espeli, C. Lee, and K.J. Marians A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV J Biol Chem 278 2003 44639 44644 The authors demonstrate that the C-terminal domain of FtsK physically interacts with topoisomerase IV, thereby stimulating its decatenating activity.
    • (2003) J Biol Chem , vol.278 , pp. 44639-44644
    • Espeli, O.1    Lee, C.2    Marians, K.J.3
  • 61
    • 0037249352 scopus 로고    scopus 로고
    • Temporal regulation of topoisomerase IV activity in E. coli
    • O. Espeli, C. Levine, H. Hassing, and K.J. Marians Temporal regulation of topoisomerase IV activity in E. coli Mol Cell 11 2003 189 201
    • (2003) Mol Cell , vol.11 , pp. 189-201
    • Espeli, O.1    Levine, C.2    Hassing, H.3    Marians, K.J.4
  • 62
    • 0037195084 scopus 로고    scopus 로고
    • Does RNA polymerase help drive chromosome segregation in bacteria?
    • J. Dworkin, and R. Losick Does RNA polymerase help drive chromosome segregation in bacteria? Proc Natl Acad Sci USA 99 2002 14089 14094
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 14089-14094
    • Dworkin, J.1    Losick, R.2
  • 63
    • 0033869982 scopus 로고    scopus 로고
    • Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid
    • T.A. Azam, S. Hiraga, and A. Ishihama Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid Genes Cells 5 2000 613 626
    • (2000) Genes Cells , vol.5 , pp. 613-626
    • Azam, T.A.1    Hiraga, S.2    Ishihama, A.3
  • 64
    • 0032716841 scopus 로고    scopus 로고
    • Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid
    • T. Ali Azam, A. Iwata, A. Nishimura, S. Ueda, and A. Ishihama Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid J Bacteriol 181 1999 6361 6370
    • (1999) J Bacteriol , vol.181 , pp. 6361-6370
    • Ali Azam, T.1    Iwata, A.2    Nishimura, A.3    Ueda, S.4    Ishihama, A.5
  • 67
    • 2342454974 scopus 로고    scopus 로고
    • Dual architectural roles of HU: Formation of flexible hinges and rigid filaments
    • •] clarifies the effect of HU binding on the conformation of DNA. Using fluorescence resonance energy transfer measurements or magnetic tweezers in conjunction with atomic force microscopy, respectively, both groups find that HU compacts DNA at low protein concentrations by inducing flexible bends. At high concentrations, however, decondensation of DNA is observed, which results from the cooperative polymerization of DNA-bound HU dimers into a rigid filamentous structure.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 6969-6974
    • Van Noort, J.1    Verbrugge, S.2    Goosen, N.3    Dekker, C.4    Dame, R.T.5
  • 68
    • 0032731196 scopus 로고    scopus 로고
    • Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity
    • T.A. Azam, and A. Ishihama Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity J Biol Chem 274 1999 33105 33113
    • (1999) J Biol Chem , vol.274 , pp. 33105-33113
    • Azam, T.A.1    Ishihama, A.2
  • 69
    • 0026069582 scopus 로고
    • The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli
    • H. Niki, A. Jaffe, R. Imamura, T. Ogura, and S. Hiraga The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli EMBO J 10 1991 183 193
    • (1991) EMBO J , vol.10 , pp. 183-193
    • Niki, H.1    Jaffe, A.2    Imamura, R.3    Ogura, T.4    Hiraga, S.5
  • 70
    • 0032079493 scopus 로고    scopus 로고
    • Characterization of a prokaryotic SMC protein involved in chromosome partitioning
    • R.A. Britton, D.C. Lin, and A.D. Grossman Characterization of a prokaryotic SMC protein involved in chromosome partitioning Genes Dev 12 1998 1254 1259
    • (1998) Genes Dev , vol.12 , pp. 1254-1259
    • Britton, R.A.1    Lin, D.C.2    Grossman, A.D.3
  • 71
    • 0034652090 scopus 로고    scopus 로고
    • Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I
    • J.A. Sawitzke, and S. Austin Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I Proc Natl Acad Sci USA 97 2000 1671 1676
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 1671-1676
    • Sawitzke, J.A.1    Austin, S.2
  • 72
    • 0027097480 scopus 로고
    • E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities
    • H. Niki, R. Imamura, M. Kitaoka, K. Yamanaka, T. Ogura, and S. Hiraga E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities EMBO J 11 1992 5101 5109
    • (1992) EMBO J , vol.11 , pp. 5101-5109
    • Niki, H.1    Imamura, R.2    Kitaoka, M.3    Yamanaka, K.4    Ogura, T.5    Hiraga, S.6
  • 73
    • 0032555919 scopus 로고    scopus 로고
    • The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: Long, antiparallel coiled coils, folded at a flexible hinge
    • T.E. Melby, C.N. Ciampaglio, G. Briscoe, and H.P. Erickson The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge J Cell Biol 142 1998 1595 1604
    • (1998) J Cell Biol , vol.142 , pp. 1595-1604
    • Melby, T.E.1    Ciampaglio, C.N.2    Briscoe, G.3    Erickson, H.P.4
  • 74
    • 0035875918 scopus 로고    scopus 로고
    • Bimodal activation of SMC ATPase by intra- and inter-molecular interactions
    • M. Hirano, D.E. Anderson, H.P. Erickson, and T. Hirano Bimodal activation of SMC ATPase by intra- and inter-molecular interactions EMBO J 20 2001 3238 3250
    • (2001) EMBO J , vol.20 , pp. 3238-3250
    • Hirano, M.1    Anderson, D.E.2    Erickson, H.P.3    Hirano, T.4
  • 75
    • 0035830484 scopus 로고    scopus 로고
    • Crystal structure of the SMC head domain: An ABC ATPase with 900 residues antiparallel coiled-coil inserted
    • J. Löwe, S.C. Cordell, and F. van den Ent Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted J Mol Biol 306 2001 25 35
    • (2001) J Mol Biol , vol.306 , pp. 25-35
    • Löwe, J.1    Cordell, S.C.2    Van Den Ent, F.3
  • 76
    • 3343008805 scopus 로고    scopus 로고
    • Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins
    • M. Hirano, and T. Hirano Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins EMBO J 23 2004 2664 2673 This publication enlightens the role of ScpA and ScpB in the condensation of DNA. The authors show that ScpA stimulates association of the terminal, catalytic domains of SMC in an ATP-dependent manner, thereby promoting polymerization of DNA-bound SMC into large nucleoprotein complexes. Association of ScpB further stabilizes these interactions.
    • (2004) EMBO J , vol.23 , pp. 2664-2673
    • Hirano, M.1    Hirano, T.2
  • 77
    • 0037124369 scopus 로고    scopus 로고
    • Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein
    • J. Mascarenhas, J. Soppa, A.V. Strunnikov, and P.L. Graumann Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein EMBO J 21 2002 3108 3118
    • (2002) EMBO J , vol.21 , pp. 3108-3118
    • Mascarenhas, J.1    Soppa, J.2    Strunnikov, A.V.3    Graumann, P.L.4
  • 78
    • 0029944542 scopus 로고    scopus 로고
    • Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli
    • K. Yamanaka, T. Ogura, H. Niki, and S. Hiraga Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli Mol Gen Genet 250 1996 241 251
    • (1996) Mol Gen Genet , vol.250 , pp. 241-251
    • Yamanaka, K.1    Ogura, T.2    Niki, H.3    Hiraga, S.4
  • 79
    • 0842285400 scopus 로고    scopus 로고
    • MigS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome
    • Y. Yamaichi, and H. Niki migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome EMBO J 23 2004 221 233 The authors describe the identification of a centromer-like sequence in E. coli. They show that a 25 bp inverted repeat, named migS, is necessary and sufficient for dynamic segregation and bipolar positioning of the origin regions. The function of migS is independent of its chromosomal position and can be abolished by introduction of multiple plasmid-borne copies.
    • (2004) EMBO J , vol.23 , pp. 221-233
    • Yamaichi, Y.1    Niki, H.2
  • 80
    • 0030901361 scopus 로고    scopus 로고
    • Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus
    • D.A. Mohl, and J.W. Gober Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus Cell 88 1997 675 684
    • (1997) Cell , vol.88 , pp. 675-684
    • Mohl, D.A.1    Gober, J.W.2
  • 81
    • 0030910954 scopus 로고    scopus 로고
    • Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning
    • P. Glaser, M.E. Sharpe, B. Raether, M. Perego, K. Ohlsen, and J. Errington Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning Genes Dev 11 1997 1160 1168
    • (1997) Genes Dev , vol.11 , pp. 1160-1168
    • Glaser, P.1    Sharpe, M.E.2    Raether, B.3    Perego, M.4    Ohlsen, K.5    Errington, J.6
  • 82
    • 0033231585 scopus 로고    scopus 로고
    • Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation
    • A.L. Marston, and J. Errington Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation Mol Cell 4 1999 673 682
    • (1999) Mol Cell , vol.4 , pp. 673-682
    • Marston, A.L.1    Errington, J.2
  • 83
    • 0141677790 scopus 로고    scopus 로고
    • RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis
    • L.J. Wu, and J. Errington RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis Mol Microbiol 49 2003 1463 1475
    • (2003) Mol Microbiol , vol.49 , pp. 1463-1475
    • Wu, L.J.1    Errington, J.2
  • 84
    • 4444285310 scopus 로고    scopus 로고
    • Dynamic movement of actin-like proteins within bacterial cells
    • H.J. Defeu Soufo, and P.L. Graumann Dynamic movement of actin-like proteins within bacterial cells EMBO Rep 5 2004 789 794 Using fusions to green fluorescent protein, the authors demonstrate that MreB, Mbl and MreBH form helical filaments with distinct morphological characteristics in B. subtilis. The MreB and Mbl spirals are shown to rotate continuously in the cell, thereby generating a potential pushing velocity of 0.24 μm/min. Formation of the MreB filament is abolished in wild type cells after inhibition of topoisomerase IV and in anucleate cells, which implies a functional interdependence between MreB polymerization and chromosome architecture.
    • (2004) EMBO Rep , vol.5 , pp. 789-794
    • Defeu Soufo, H.J.1    Graumann, P.L.2
  • 85
    • 2942588534 scopus 로고    scopus 로고
    • An actin-like gene can determine cell polarity in bacteria
    • Z. Gitai, N. Dye, and L. Shapiro An actin-like gene can determine cell polarity in bacteria Proc Natl Acad Sci USA 101 2004 8643 8648 The authors show that, in C. crescentus, the actin homolog MreB forms a dynamic spiral-like structure, which contracts into a ring positioned at the future site of cell division at the late stage of the cell cycle. Both overproduction and depletion of MreB strongly affect polar localization of the chromosomal origin and known cell-cycle regulatory proteins. It is further demonstrated that induction of MreB in cells previously depleted for the protein can result in the complete inversion of the localization pattern of asymmetrically positioned proteins, suggesting a role for MreB in both the establishment and the maintenance of cell polarity.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 8643-8648
    • Gitai, Z.1    Dye, N.2    Shapiro, L.3
  • 86
    • 0141864658 scopus 로고    scopus 로고
    • Dysfunctional MreB inhibits chromosome segregation in Escherichia coli
    • T. Kruse, J. Moller-Jensen, A. Lobner-Olesen, and K. Gerdes Dysfunctional MreB inhibits chromosome segregation in Escherichia coli EMBO J 22 2003 5283 5292 The authors reveal that chromosome segregation is dependent on the presence of a functional MreB spiral in E. coli. Deletion of mreB results in strong morphological defects combined with aberrant segregation and positioning of the origins of replication. Overexpression of the wild type protein inhibits cell division without significantly affecting the morphology of the MreB helix or chromosome partitioning. However, overproduction of mutant forms that yield abnormally shaped MreB filaments causes elongation of the cells and pronounced chromosomal segregation defects.
    • (2003) EMBO J , vol.22 , pp. 5283-5292
    • Kruse, T.1    Moller-Jensen, J.2    Lobner-Olesen, A.3    Gerdes, K.4
  • 87
    • 0242381270 scopus 로고    scopus 로고
    • Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins
    • H.J. Soufo, and P.L. Graumann Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins Curr Biol 13 2003 1916 1920 This work shows that the actin homologs MreB and Mbl are necessary for proper chromosome segregation in B. subtilis. In cells depleted for either of these proteins, newly duplicated origin regions are found to be mislocalized and often associated with each other. Depletion further causes aberrant localization of the SMC complex, which indicates major changes in nucleoid organization.
    • (2003) Curr Biol , vol.13 , pp. 1916-1920
    • Soufo, H.J.1    Graumann, P.L.2
  • 88
    • 13544274210 scopus 로고    scopus 로고
    • MreB actin-mediated segregation of a specific region of a bacterial chromosome
    • article in press.
    • Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L: MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 2005 120: article in press. This study demonstrates that the MreB cytoskeleton is directly involved in the rapid pole-ward movement of newly replicated origin regions in C. crescentus. The authors first characterize a novel antibiotic, named A22. They show that all stains obtained from a screen for A22 resistant cells carry mutations in MreB that map close to the ATP-binding pocket of the protein. Exposure of C. crescentus to the drug causes nearly instantaneous disassembly of the MreB spiral. This effect is rapidly reversed after transfer of the cells into A22-free medium, making the compound a valuable tool for the study of MreB function. In cells treated with A22, DNA replication initiates and proceeds normally, but the newly duplicated origin regions are not separated. However, if A22 is removed from the medium later in S-phase, immediate and rapid segregation of the origins is observed, which indicates the necessity of a functional MreB spiral for this process to occur. By contrast, A22 does not affect segregation of other chromosomal loci, if added after separation of the origin regions. The authors, therefore, conclude that different mechanisms might act in a sequential manner to drive bacterial chromosome segregation.
    • (2005) Cell , vol.120
    • Gitai, Z.1    Dye, N.A.2    Reisenauer, A.3    Wachi, M.4    Shapiro, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.