메뉴 건너뛰기




Volumn 8, Issue 1, 2005, Pages 107-114

Approaches to the analysis of cell signaling networks and their application in drug discovery

Author keywords

Computational models; Drug mechanism; Expression profiling; Gene networks; Proteomics

Indexed keywords

ANTIFUNGAL AGENT; CYCLOSPORIN; FLUCONAZOLE; TACROLIMUS;

EID: 12244279965     PISSN: 13676733     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (13)

References (55)
  • 1
    • 0035338343 scopus 로고    scopus 로고
    • Risks in new drug development: Approval success rates for investigational drugs
    • DiMasi JA: Risks in new drug development: Approval success rates for investigational drugs. Clin Pharmacol Ther (2001) 69(5):297-307.
    • (2001) Clin Pharmacol Ther , vol.69 , Issue.5 , pp. 297-307
    • DiMasi, J.A.1
  • 2
  • 3
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (1995) 270(5235):467-470.
    • (1995) Science , vol.270 , Issue.5235 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 5
    • 0037434980 scopus 로고    scopus 로고
    • From genomics to proteomics
    • Tyers M, Mann M: From genomics to proteomics. Nature (2003) 422(6928):193-197.
    • (2003) Nature , vol.422 , Issue.6928 , pp. 193-197
    • Tyers, M.1    Mann, M.2
  • 6
    • 0032875697 scopus 로고    scopus 로고
    • Quantitative analysis of complex protein mixtures using isotope-coded affinity tags
    • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol (1999) 17(10):994-999. Description of a method for quantifying proteins using mass spectrometry.
    • (1999) Nat Biotechnol , vol.17 , Issue.10 , pp. 994-999
    • Gygi, S.P.1    Rist, B.2    Gerber, S.A.3    Turecek, F.4    Gelb, M.H.5    Aebersold, R.6
  • 7
    • 4043141477 scopus 로고    scopus 로고
    • Quantitative cancer proteomics: Stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research
    • Everley PA, Krijgsveld J, Zetter BR, Gygi SP: Quantitative cancer proteomics: Stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics (2004) 3(7):729-735.
    • (2004) Mol Cell Proteomics , vol.3 , Issue.7 , pp. 729-735
    • Everley, P.A.1    Krijgsveld, J.2    Zetter, B.R.3    Gygi, S.P.4
  • 8
  • 10
    • 20144368638 scopus 로고    scopus 로고
    • Integrated genomic and proteomic analyses of gene expression in mammalian cells
    • Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D et al: Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics (2004) 3(10):960-969 Describes a large-scale comparison of microarray and proteomics datasets in mouse and human cell lines, and demonstrates that the differential expression of mRNA captures only 40% of the variation of protein expression in mammalian cells.
    • (2004) Mol Cell Proteomics , vol.3 , Issue.10 , pp. 960-969
    • Tian, Q.1    Stepaniants, S.B.2    Mao, M.3    Weng, L.4    Feetham, M.C.5    Doyle, M.J.6    Yi, E.C.7    Dai, H.8    Thorsson, V.9    Eng, J.10    Goodlett, D.11
  • 13
    • 10944246119 scopus 로고    scopus 로고
    • Localization of organelle proteins by isotope tagging (LOPIT)
    • Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS: Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics (2004) 3(11):1128-1134. Describes a method that allows subcellular localization of proteins.
    • (2004) Mol Cell Proteomics , vol.3 , Issue.11 , pp. 1128-1134
    • Dunkley, T.P.1    Watson, R.2    Griffin, J.L.3    Dupree, P.4    Lilley, K.S.5
  • 14
    • 3242775565 scopus 로고    scopus 로고
    • PROCEED: A proteomic method for analysing plasma membrane proteins in living mammalian cells
    • Bledi Y, Inberg A, Linial M: PROCEED: A proteomic method for analysing plasma membrane proteins in living mammalian cells. Brief Funct Genomic Proteomic (2003) 2(3):254-265.
    • (2003) Brief Funct Genomic Proteomic , vol.2 , Issue.3 , pp. 254-265
    • Bledi, Y.1    Inberg, A.2    Linial, M.3
  • 15
    • 3042654830 scopus 로고    scopus 로고
    • Protein expression profiling arrays: Tools for the multiplexed high-throughput analysis of proteins
    • Sydor JR, Nock S: Protein expression profiling arrays: Tools for the multiplexed high-throughput analysis of proteins. Proteome Sci (2003) 1(1):3. http://www.proteomesci.com/content/1/1/3 Review discussing the challenges of building protein arrays.
    • (2003) Proteome Sci , vol.1 , Issue.1 , pp. 3
    • Sydor, J.R.1    Nock, S.2
  • 16
    • 2942527049 scopus 로고    scopus 로고
    • Lipomic profiling in drug discovery, development and clinical trial evaluation
    • Watkins SM: Lipomic profiling in drug discovery, development and clinical trial evaluation. Curr Opin Drug Discovery Dev (2004) 7(1):112-117.
    • (2004) Curr Opin Drug Discovery Dev , vol.7 , Issue.1 , pp. 112-117
    • Watkins, S.M.1
  • 17
    • 0037050020 scopus 로고    scopus 로고
    • Protein complexes take the bait
    • Kumar A, Snyder M: Protein complexes take the bait. Nature (2002) 415(6868):123-124.
    • (2002) Nature , vol.415 , Issue.6868 , pp. 123-124
    • Kumar, A.1    Snyder, M.2
  • 18
    • 0032828715 scopus 로고    scopus 로고
    • A generic protein purification method for protein complex characterization and proteome exploration
    • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B: A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol (1999) 17(10):1030-1032.
    • (1999) Nat Biotechnol , vol.17 , Issue.10 , pp. 1030-1032
    • Rigaut, G.1    Shevchenko, A.2    Rutz, B.3    Wilm, M.4    Mann, M.5    Seraphin, B.6
  • 19
    • 0035252675 scopus 로고    scopus 로고
    • Protein arrays and microarrays
    • Zhu H, Snyder M: Protein arrays and microarrays. Curr Opin Chem Biol (2001) 5(1):40-45.
    • (2001) Curr Opin Chem Biol , vol.5 , Issue.1 , pp. 40-45
    • Zhu, H.1    Snyder, M.2
  • 20
    • 0242354926 scopus 로고    scopus 로고
    • Parallel determination of multiple protein metabolite interactions using cell extract, protein microarrays and mass spectrometric detection
    • Morozov VN, Morozova TY, Johnson KL, Naylor S: Parallel determination of multiple protein metabolite interactions using cell extract, protein microarrays and mass spectrometric detection. Rapid Commun Mass Spectrom (2003) 17(21):2430-2438.
    • (2003) Rapid Commun Mass Spectrom , vol.17 , Issue.21 , pp. 2430-2438
    • Morozov, V.N.1    Morozova, T.Y.2    Johnson, K.L.3    Naylor, S.4
  • 22
    • 3943087720 scopus 로고    scopus 로고
    • Analyzing cellular biochemistry in terms of molecular networks
    • Xia Y, Yu H, Jansen R, Seringhaus M, Baxters, Greenbaum D, Zhao H, Gerstein M: Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem (2004) 73:1051-1087. An excellent review of current approaches for identifying signaling network components and component interactions.
    • (2004) Annu Rev Biochem , vol.73 , pp. 1051-1087
    • Xia, Y.1    Yu, H.2    Jansen, R.3    Seringhaus, M.4    Baxters5    Greenbaum, D.6    Zhao, H.7    Gerstein, M.8
  • 23
    • 0033974688 scopus 로고    scopus 로고
    • Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins
    • Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y: Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA (2000) 97(3):1143-1147.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.3 , pp. 1143-1147
    • Ito, T.1    Tashiro, K.2    Muta, S.3    Ozawa, R.4    Chiba, T.5    Nishizawa, M.6    Yamamoto, K.7    Kuhara, S.8    Sakaki, Y.9
  • 25
    • 1842580761 scopus 로고    scopus 로고
    • Functional and topological characterization of protein interaction networks
    • Yook SH, Oltvai ZN, Barabasi AL: Functional and topological characterization of protein interaction networks. Proteomics (2004) 4(4):928-942.
    • (2004) Proteomics , vol.4 , Issue.4 , pp. 928-942
    • Yook, S.H.1    Oltvai, Z.N.2    Barabasi, A.L.3
  • 26
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA (2001) 98(8):4569-4574.
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.8 , pp. 4569-4574
    • Ito, T.1    Chiba, T.2    Ozawa, R.3    Yoshida, M.4    Hattori, M.5    Sakaki, Y.6
  • 27
    • 4444371652 scopus 로고    scopus 로고
    • Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics
    • Blagoev B, Ong SE, Kratchmarova I, Mann M: Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol (2004) 22(9):1139-1145.
    • (2004) Nat Biotechnol , vol.22 , Issue.9 , pp. 1139-1145
    • Blagoev, B.1    Ong, S.E.2    Kratchmarova, I.3    Mann, M.4
  • 28
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA (1998) 95(25):14863-14868.
    • (1998) Proc Natl Acad Sci USA , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 30
    • 0347473810 scopus 로고    scopus 로고
    • Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways
    • Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C: Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol (2004) 22(1):62-69. Description of an indirect approach to exploring signaling networks, which integrates chemical-genetic and genetic interaction data from yeast to identify pathways or proteins targeted by compounds.
    • (2004) Nat Biotechnol , vol.22 , Issue.1 , pp. 62-69
    • Parsons, A.B.1    Brost, R.L.2    Ding, H.3    Li, Z.4    Zhang, C.5    Sheikh, B.6    Brown, G.W.7    Kane, P.M.8    Hughes, T.R.9    Boone, C.10
  • 32
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair E, Tibshirani R: Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol (2004) 2(4):E108.
    • (2004) PLoS Biol , vol.2 , Issue.4
    • Bair, E.1    Tibshirani, R.2
  • 36
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang S, Fuhrman S, Somogyi R: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symp Biocomput (1998) 3:18-29. Description of the development and analysis of an algorithm for causal inference based on the correlation measure of mutual information.
    • (1998) Pacific Symp Biocomput , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 37
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • Ideker TE, Thorsson V, Karp RM: Discovery of regulatory interactions through perturbation: Inference and experimental design. Pacific Symp Biocomput (2000) 5:305-316. Description of the perturbation approach for building networks.
    • (2000) Pacific Symp Biocomput , vol.5 , pp. 305-316
    • Ideker, T.E.1    Thorsson, V.2    Karp, R.M.3
  • 38
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu T, Miyano S, Kuhara S: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symp Biocomput (1999) 4:17-28. Mathematical analysis of the number of gene expression patterns required for the identification of a genetic network under the Boolean network model.
    • (1999) Pacific Symp Biocomput , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 39
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics (2002) 18(2):261-274.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 40
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. J Comput Biol (2000) 7(3-4):601-620. Method for recovering gene interactions from expression data using Bayesian networks learning tools.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 41
    • 3242875300 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    • Imoto S, Higuchi T, Goto T, Tashiro K, Kuhara S, Miyano S: Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J Bioinform Comput Biol (2004) 2(1):77-98. Description of a Bayesian network framework which incorporates gene expression, protein-DNA interaction, protein-protein interaction, binding site and literature data to model cell networks in yeast.
    • (2004) J Bioinform Comput Biol , vol.2 , Issue.1 , pp. 77-98
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5    Miyano, S.6
  • 43
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic networks and identifying compound mode of action via expression profiling. Science (2003) 301(5629):102-105. Description of an approach using transcriptional perturbations to build a model of a subnetwork of the SOS pathway in bacteria and its application to study network properties and identify molecular targets of drugs.
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 44
    • 4444356634 scopus 로고    scopus 로고
    • Use of gene networks for identifying and validating drug targets
    • Imoto S, Savoie CJ, Aburatani S, Kim S, Tashiro K, Kuhara S, Miyano S: Use of gene networks for identifying and validating drug targets. J Bioinform Comput Biol (2003) 1(3):459-474. Description of a method for identifying drug targets using gene disruption and drug response gene expression data combined with Bayesian network formalism, including a demonstration of application of the strategy to drug discovery using yeast gene expression data.
    • (2003) J Bioinform Comput Biol , vol.1 , Issue.3 , pp. 459-474
    • Imoto, S.1    Savoie, C.J.2    Aburatani, S.3    Kim, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 45
    • 3042668008 scopus 로고    scopus 로고
    • Modeling cell signaling networks
    • Eungdamrong NJ, Iyengar R: Modeling cell signaling networks. Biol Cell (2004) 96(5):355-362. Discussion of the different mathematical approaches employed to model signaling networks.
    • (2004) Biol Cell , vol.96 , Issue.5 , pp. 355-362
    • Eungdamrong, N.J.1    Iyengar, R.2
  • 46
    • 2942514591 scopus 로고    scopus 로고
    • Biochemical Network Stochastic Simulator (BioNetS): Software for stochastic modeling of biochemical networks
    • Adalsteinsson D, McMillen D, Elston TC: Biochemical Network Stochastic Simulator (BioNetS): Software for stochastic modeling of biochemical networks. BMC Bioinformatics (2004) 5(1):24.
    • (2004) BMC Bioinformatics , vol.5 , Issue.1 , pp. 24
    • Adalsteinsson, D.1    McMillen, D.2    Elston, T.C.3
  • 47
    • 2342469914 scopus 로고    scopus 로고
    • Stochastic model of protein-protein interaction: Why signaling proteins need to be colocalized
    • Batada NN, Shepp LA, Siegmund DO: Stochastic model of protein-protein interaction: Why signaling proteins need to be colocalized. Proc Natl Acad Sci USA (2004) 101(17):6445-6449.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.17 , pp. 6445-6449
    • Batada, N.N.1    Shepp, L.A.2    Siegmund, D.O.3
  • 48
    • 0041843750 scopus 로고    scopus 로고
    • An integrated model of epidermal growth factor receptor trafficking and signal transduction
    • Resat H, Ewald JA, Dixon DA, Wiley HS: An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J (2003) 85(2):730-743.
    • (2003) Biophys J , vol.85 , Issue.2 , pp. 730-743
    • Resat, H.1    Ewald, J.A.2    Dixon, D.A.3    Wiley, H.S.4
  • 49
    • 0036212767 scopus 로고    scopus 로고
    • Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors
    • Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol (2002) 20(4):370-375.
    • (2002) Nat Biotechnol , vol.20 , Issue.4 , pp. 370-375
    • Schoeberl, B.1    Eichler-Jonsson, C.2    Gilles, E.D.3    Muller, G.4
  • 50
    • 12144289400 scopus 로고    scopus 로고
    • A physical and functional map of the human TNFα/NFκB signal transduction pathway
    • Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C et al: A physical and functional map of the human TNFα/NFκB signal transduction pathway. Nat Cell Biol (2004) 6(2):97-105. Combining protein pull-down, LC/MS and directed functional perturbation studies using RNA interference, the authors were able to generate a protein connectivity map of the TNFα/NFκB signal pathway in HEK293 cells, a human embryonic kidney cell line.
    • (2004) Nat Cell Biol , vol.6 , Issue.2 , pp. 97-105
    • Bouwmeester, T.1    Bauch, A.2    Ruffner, H.3    Angrand, P.O.4    Bergamini, G.5    Croughton, K.6    Cruciat, C.7    Eberhard, D.8    Gagneur, J.9    Ghidelli, S.10    Hopf, C.11
  • 51
    • 2942576105 scopus 로고    scopus 로고
    • Data-driven computer simulation of human cancer cell
    • Christopher R, Dhiman A, Fox J, Gendelman R, Haberitcher T, Kagle D, Spizz G, Khalil IG, Hill C: Data-driven computer simulation of human cancer cell. Ann NY Acad Sci (2004) 1020:132-153. Description of the building of a graphical network model of a human colon cancer cell containing over 1000 genes and proteins and a simulation model that can be tested by 'virtual' knockdown experiments.
    • (2004) Ann NY Acad Sci , vol.1020 , pp. 132-153
    • Christopher, R.1    Dhiman, A.2    Fox, J.3    Gendelman, R.4    Haberitcher, T.5    Kagle, D.6    Spizz, G.7    Khalil, I.G.8    Hill, C.9
  • 52
    • 10744233471 scopus 로고    scopus 로고
    • Method for analyzing signaling networks in complex cellular systems
    • Plavec I, Sirenko O, Privat S, Wang Y, Dajee M, Melrose J, Nakao B, Hytopoulos E, Berg EL, Butcher EC: Method for analyzing signaling networks in complex cellular systems. Proc Natl Acad Sci USA (2004) 101(5):1223-1228. Outlines how the mapping of gene functions by overexpression in complex cell systems, combining data from multiple systems, car identify pathway cross-talk and feedback mechanisms.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.5 , pp. 1223-1228
    • Plavec, I.1    Sirenko, O.2    Privat, S.3    Wang, Y.4    Dajee, M.5    Melrose, J.6    Nakao, B.7    Hytopoulos, E.8    Berg, E.L.9    Butcher, E.C.10
  • 53
    • 4644264129 scopus 로고    scopus 로고
    • An integrative biology approach for analysis of drug action in models of human vascular inflammation
    • Kunkel EJ, Dea M, Ebens A, Hytopoulos E, Melrose J, Nguyen D, Ota KS, Plavec I, Wang Y, Watson SR, Butcher EC et al. An integrative biology approach for analysis of drug action in models of human vascular inflammation. FASEB J (2004) 18(11):1279-1281. Outlines how compound profiling in multiple complex cell systems can provide mechanism of actions and secondary target information.
    • (2004) FASEB J , vol.18 , Issue.11 , pp. 1279-1281
    • Kunkel, E.J.1    Dea, M.2    Ebens, A.3    Hytopoulos, E.4    Melrose, J.5    Nguyen, D.6    Ota, K.S.7    Plavec, I.8    Wang, Y.9    Watson, S.R.10    Butcher, E.C.11
  • 54
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature (2004) 431(7006):308-312. Description of an approach for statistical analysis of the dynamics of biological networks in yeast, in which unexpectedly large changes in the underlying network architecture were identified.
    • (2004) Nature , vol.431 , Issue.7006 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.