메뉴 건너뛰기




Volumn 20, Issue 4, 2003, Pages 351-367

Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae

Author keywords

cAMP; Cell cycle; Energy metabolism; Oscillations; Synchronous cultures

Indexed keywords

CYCLIC AMP; GLUCOSE; GLYCOGEN; TREHALOSE;

EID: 0037338995     PISSN: 0749503X     EISSN: None     Source Type: Journal    
DOI: 10.1002/yea.967     Document Type: Article
Times cited : (63)

References (90)
  • 1
    • 0026191841 scopus 로고
    • Flow cytometry and cell cycle kinetics in continuous and fed-batch fermentations of budding yeast
    • Alberghina L, Ranzi BM, Porro D, Martegani E. 1991. Flow cytometry and cell cycle kinetics in continuous and fed-batch fermentations of budding yeast. Biotechnol Prog 7: 299-304.
    • (1991) Biotechnol. Prog. , vol.7 , pp. 299-304
    • Alberghina, L.1    Ranzi, B.M.2    Porro, D.3    Martegani, E.4
  • 2
    • 0031858093 scopus 로고    scopus 로고
    • Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry
    • Alberghina L, Smeraldi C, Ranzi BM, Porro D. 1998. Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry. J Bacteriol 180(15): 3864-3872.
    • (1998) J. Bacteriol. , vol.180 , Issue.15 , pp. 3864-3872
    • Alberghina, L.1    Smeraldi, C.2    Ranzi, B.M.3    Porro, D.4
  • 3
    • 0033178811 scopus 로고    scopus 로고
    • Chromosome separation and exit from mitosis in budding yeast: Dependence on growth revealed by cAMP-mediated inhibition
    • Anghileri P, Branduardi P, Sternieri F, et al. 1999. Chromosome separation and exit from mitosis in budding yeast: dependence on growth revealed by cAMP-mediated inhibition. Exp Cell Res 250: 510-523.
    • (1999) Exp. Cell Res. , vol.250 , pp. 510-523
    • Anghileri, P.1    Branduardi, P.2    Sternieri, F.3
  • 4
    • 0025732406 scopus 로고
    • Dynamic regulation of yeast glycolytic oscillations by mitochondrial functions
    • Aon MA, Cortassa S, Westerhoff HV, et al. 1991. Dynamic regulation of yeast glycolytic oscillations by mitochondrial functions. J Cell Sci 99: 325-334.
    • (1991) J. Cell Sci. , vol.99 , pp. 325-334
    • Aon, M.A.1    Cortassa, S.2    Westerhoff, H.V.3
  • 5
    • 0024971494 scopus 로고
    • Purification and characterization of neutral trehalase from the yeast ABYS1 mutant
    • App H, Holzer H. 1989. Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J Biol Chem 264(29): 17583-17588.
    • (1989) J. Biol. Chem. , vol.264 , Issue.29 , pp. 17583-17588
    • App, H.1    Holzer, H.2
  • 6
    • 0034100041 scopus 로고    scopus 로고
    • Glucose depletion rapidly inhibits translation initiation in yeast
    • Ashe MP, De Long SK, Sachs AB. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11: 833-848.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 833-848
    • Ashe, M.P.1    De Long, S.K.2    Sachs, A.B.3
  • 7
    • 0021364454 scopus 로고
    • Buoyant density variation during the cell cycle of Saccharomyces cerevisiae
    • Baldwin WW, Kubitschek HE. 1984. Buoyant density variation during the cell cycle of Saccharomyces cerevisiae. J Bacteriol 158(2): 701-704.
    • (1984) J. Bacteriol. , vol.158 , Issue.2 , pp. 701-704
    • Baldwin, W.W.1    Kubitschek, H.E.2
  • 8
    • 0027984898 scopus 로고
    • 1 cyclin expression by cyclic AMP in budding yeast
    • 1 cyclin expression by cyclic AMP in budding yeast. Nature 371: 339-342.
    • (1994) Nature , vol.371 , pp. 339-342
    • Baroni, M.D.1    Monti, P.2    Alberghina, L.3
  • 9
    • 0018175842 scopus 로고
    • A method for glycogen determination in whole yeast cells
    • Becker JU. 1978. A method for glycogen determination in whole yeast cells. Anal Biochem 86(1): 56-64.
    • (1978) Anal. Biochem. , vol.86 , Issue.1 , pp. 56-64
    • Becker, J.U.1
  • 10
  • 11
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho RJ, Campbell MJ, Winzeler EA, et al. 1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2: 65-73.
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1    Campbell, M.J.2    Winzeler, E.A.3
  • 12
    • 0032526715 scopus 로고    scopus 로고
    • Involvement of distinct G-proteins, Gpa2 and Ras in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae
    • Colombo S, Ma P, Cauwenberg L, et al. 1998. Involvement of distinct G-proteins, Gpa2 and Ras in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17(12): 3326-3341.
    • (1998) EMBO J. , vol.17 , Issue.12 , pp. 3326-3341
    • Colombo, S.1    Ma, P.2    Cauwenberg, L.3
  • 13
    • 0025818415 scopus 로고
    • Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: A rectification
    • de Koning W, Groeneveld K, Oehlen LJWM, Berden JA, van Dam K. 1991. Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: a rectification. J Gen Microbiol 137: 971-976.
    • (1991) J. Gen. Microbiol. , vol.137 , pp. 971-976
    • de Koning, W.1    Groeneveld, K.2    Oehlen, L.J.W.M.3    Berden, J.A.4    van Dam, K.5
  • 14
    • 0031028964 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1
    • Dombek KM, Young ET. 1997. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Mol Cell Biol 17(3): 1450-1458.
    • (1997) Mol. Cell Biol. , vol.17 , Issue.3 , pp. 1450-1458
    • Dombek, K.M.1    Young, E.T.2
  • 15
    • 0030592434 scopus 로고    scopus 로고
    • Physiology of Saccharomyces cerevisiae during cell cycle oscillations
    • Duboc P, Marison I, von Stockar U. 1996. Physiology of Saccharomyces cerevisiae during cell cycle oscillations. J Biotechnol 51: 57-72.
    • (1996) J. Biotechnol. , vol.51 , pp. 57-72
    • Duboc, P.1    Marison, I.2    von Stockar, U.3
  • 16
    • 0033813390 scopus 로고    scopus 로고
    • Stress-controlled transcription factors, stress-induced genes, and stress tolerance in budding yeast
    • Estruch F. 2000. Stress-controlled transcription factors, stress-induced genes, and stress tolerance in budding yeast. FEMS Microbiol Rev 24(4): 469-486.
    • (2000) FEMS Microbiol. Rev. , vol.24 , Issue.4 , pp. 469-486
    • Estruch, F.1
  • 17
    • 0023193659 scopus 로고
    • Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose
    • Francois J, Eraso P, Gancedo C. 1987. Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164(2): 369-373.
    • (1987) Eur. J. Biochem. , vol.164 , Issue.2 , pp. 369-373
    • Francois, J.1    Eraso, P.2    Gancedo, C.3
  • 18
    • 0035161939 scopus 로고    scopus 로고
    • Reserve carbohydrate metabolism in the yeast Saccharomyces cerevisiae
    • Francois J, Parrou JL. 2001. Reserve carbohydrate metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25: 125-145.
    • (2001) FEMS Microbiol. Rev. , vol.25 , pp. 125-145
    • Francois, J.1    Parrou, J.L.2
  • 19
    • 0003772022 scopus 로고
    • Dynamics of Saccharomyces cerevisiae in continuous culture
    • ECB6: Proceedings of the 6th European Congress on Biotechnology, Alberghina L, Frontali L, Sensi P (eds). Elsevier Science: Amsterdam
    • Frandsen S, Nielsen J, Villadsen J. 1994. Dynamics of Saccharomyces cerevisiae in continuous culture. In ECB6: Proceedings of the 6th European Congress on Biotechnology, Alberghina L, Frontali L, Sensi P (eds). Elsevier Science: Amsterdam; 887-890.
    • (1994) , pp. 887-890
    • Frandsen, S.1    Nielsen, J.2    Villadsen, J.3
  • 20
    • 0030450959 scopus 로고    scopus 로고
    • Cyclins and the wiring of the yeast cell cycle
    • Futcher B. 1996. Cyclins and the wiring of the yeast cell cycle. Yeast 12(16): 1635-1646.
    • (1996) Yeast , vol.12 , Issue.16 , pp. 1635-1646
    • Futcher, B.1
  • 21
    • 0032767911 scopus 로고    scopus 로고
    • Cell cycle synchronization
    • Futcher B. 1999. Cell cycle synchronization. Methods Cell Sci 21: 79-86.
    • (1999) Methods Cell Sci. , vol.21 , pp. 79-86
    • Futcher, B.1
  • 22
    • 0031734864 scopus 로고    scopus 로고
    • Ssa1p chaperone interacts with the guanine nucleotide exchange factor of Ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae
    • Geymonat M, Wang L, Garreau H, Jacquet M. 1998. Ssa1p chaperone interacts with the guanine nucleotide exchange factor of Ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol Microbial 30(4): 855-864.
    • (1998) Mol. Microbiol. , vol.30 , Issue.4 , pp. 855-864
    • Geymonat, M.1    Wang, L.2    Garreau, H.3    Jacquet, M.4
  • 23
    • 0030806641 scopus 로고    scopus 로고
    • A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol
    • Gonzalez B, Francois J, Renaud M. 1997. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 14: 1347-1355.
    • (1997) Yeast , vol.14 , pp. 1347-1355
    • Gonzalez, B.1    Francois, J.2    Renaud, M.3
  • 24
    • 0033571212 scopus 로고    scopus 로고
    • Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion
    • Grauslund M, Lopes JM, Rønnow B. 1999. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 27(22): 4391-4398.
    • (1999) Nucleic Acids Res. , vol.27 , Issue.22 , pp. 4391-4398
    • Grauslund, M.1    Lopes, J.M.2    Rønnow, B.3
  • 25
    • 0032479988 scopus 로고    scopus 로고
    • Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae
    • Hall DD, Markwardt DD, Parviz F, Heideman W. 1998. Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J 17(15): 4370-4378.
    • (1998) EMBO J. , vol.17 , Issue.15 , pp. 4370-4378
    • Hall, D.D.1    Markwardt, D.D.2    Parviz, F.3    Heideman, W.4
  • 26
    • 0028365073 scopus 로고
    • Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state
    • Haney SA, Broach SR. 1994. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state. J Biol Chem 269(24): 16541-16548.
    • (1994) J. Biol. Chem. , vol.269 , Issue.24 , pp. 16541-16548
    • Haney, S.A.1    Broach, S.R.2
  • 27
    • 0035984604 scopus 로고    scopus 로고
    • The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits
    • Harashima T, Heitman J. 2002. The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits. Mol Cell 10: 163-173.
    • (2002) Mol. Cell , vol.10 , pp. 163-173
    • Harashima, T.1    Heitman, J.2
  • 28
    • 0012399988 scopus 로고
    • Periodic density fluctuation during the yeast cell cycle and the selection of synchronous cultures
    • Hartwell LH. 1970. Periodic density fluctuation during the yeast cell cycle and the selection of synchronous cultures. J Bacteriol 104(3): 1280-1285.
    • (1970) J. Bacteriol. , vol.104 , Issue.3 , pp. 1280-1285
    • Hartwell, L.H.1
  • 29
    • 0026713757 scopus 로고
    • Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger
    • Hirimburegama K, Durnez P, Keleman J, et al. 1992. Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138: 2035-2043.
    • (1992) J. Gen. Microbiol. , vol.138 , pp. 2035-2043
    • Hirimburegama, K.1    Durnez, P.2    Keleman, J.3
  • 30
    • 0028860796 scopus 로고
    • Population balance models of autonomous microbial oscillations
    • Hjortsø MA, Nielsen J. 1995. Population balance models of autonomous microbial oscillations. J Biotechnol 42(3): 255-269.
    • (1995) J. Biotechnol. , vol.42 , Issue.3 , pp. 255-269
    • Hjortsø, M.A.1    Nielsen, J.2
  • 32
    • 0342803745 scopus 로고    scopus 로고
    • Glucose and Ras activity influence the ubiquitin ligases APC/C and SCF in Saccharomyces cerevisiae
    • Irniger S, Bäumer M, Braus GH. 2000. Glucose and Ras activity influence the ubiquitin ligases APC/C and SCF in Saccharomyces cerevisiae. Genetics 154: 1509-1521.
    • (2000) Genetics , vol.154 , pp. 1509-1521
    • Irniger, S.1    Bäumer, M.2    Braus, G.H.3
  • 33
    • 0029131894 scopus 로고
    • The cellular content of Cdc25p, the Ras exchange factor in Saccharomyces cerevisiae, is regulated by destabilization through a cyclin destruction box
    • Kaplon T, Jacquet M. 1995. The cellular content of Cdc25p, the Ras exchange factor in Saccharomyces cerevisiae, is regulated by destabilization through a cyclin destruction box. J Biol Chem 270(35): 20742-20747.
    • (1995) J. Biol. Chem. , vol.270 , Issue.35 , pp. 20742-20747
    • Kaplon, T.1    Jacquet, M.2
  • 35
    • 0031991880 scopus 로고    scopus 로고
    • PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression
    • Kotani S, Tugendreich S, Fujii M, et al. 1998. PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell 1: 371-380.
    • (1998) Mol. Cell , vol.1 , pp. 371-380
    • Kotani, S.1    Tugendreich, S.2    Fujii, M.3
  • 36
    • 0033598127 scopus 로고    scopus 로고
    • Regulation of APC activity by phosphorylation and regulatory factors
    • Kotani S, Tanaka H, Yasuda H, Todokoro K. 1999. Regulation of APC activity by phosphorylation and regulatory factors. J Cell Biol 146(4): 791-800.
    • (1999) J. Cell Biol. , vol.146 , Issue.4 , pp. 791-800
    • Kotani, S.1    Tanaka, H.2    Yasuda, H.3    Todokoro, K.4
  • 37
    • 0032986914 scopus 로고    scopus 로고
    • A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose
    • Kraakman L, Lemaire K, Ma P, et al. 1999a. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32(5): 1002-1012.
    • (1999) Mol. Microbiol. , vol.32 , Issue.5 , pp. 1002-1012
    • Kraakman, L.1    Lemaire, K.2    Ma, P.3
  • 38
    • 0033213970 scopus 로고    scopus 로고
    • Structure-function analysis of yeast hexokinase: Structural requirements for triggering cAMP signalling and catabolite repression
    • Kraakman L, Winderickx J, Thevelein JM, de Winde JH. 1999b. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochem J 343: 159-168.
    • (1999) Biochem. J. , vol.343 , pp. 159-168
    • Kraakman, L.1    Winderickx, J.2    Thevelein, J.M.3    de Winde, J.H.4
  • 39
    • 0014653793 scopus 로고
    • Changes in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae
    • Küenzi MT, Fiechter A. 1969. Changes in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol 64: 396-407.
    • (1969) Arch. Mikrobiol. , vol.64 , pp. 396-407
    • Küenzi, M.T.1    Fiechter, A.2
  • 40
    • 0000440206 scopus 로고
    • UV methods with hexokinase and glucose-6-phosphate dehydrogenase
    • 3rd edn, Bergmeyer HU (ed.). VCH: Weinheim
    • Kunst A, Draeger B, Ziegenhorn J. 1984. UV methods with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis, vol VI, Metabolites 1: Carbohydrates, 3rd edn, Bergmeyer HU (ed.). VCH: Weinheim; 163-172.
    • (1984) Methods of Enzymatic Analysis, Metabolites 1: Carbohydrates , vol.6 , pp. 163-172
    • Kunst, A.1    Draeger, B.2    Ziegenhorn, J.3
  • 41
    • 0018867647 scopus 로고
    • Yeast mating pheromone α-factor inhibits adenylate cyclase
    • Liao H, Thorner J. 1980. Yeast mating pheromone α-factor inhibits adenylate cyclase. Proc Natl Acad Sci USA 77: 1898-1902.
    • (1980) Proc. Natl. Acad. Sci. USA , vol.77 , pp. 1898-1902
    • Liao, H.1    Thorner, J.2
  • 42
    • 0033967762 scopus 로고    scopus 로고
    • The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae
    • Lorenz MC, Pan X, Harashima T, et al. 2000. The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154: 609-622.
    • (2000) Genetics , vol.154 , pp. 609-622
    • Lorenz, M.C.1    Pan, X.2    Harashima, T.3
  • 43
    • 0032896365 scopus 로고    scopus 로고
    • The PDE1-encoded low affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function controlling agonist-induced cAMP signalling
    • Ma P, Wera S, van Dijck P, Thevelein JM. 1999. The PDE1-encoded low affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function controlling agonist-induced cAMP signalling. Mol Biol Cell 10: 91-104.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 91-104
    • Ma, P.1    Wera, S.2    van Dijck, P.3    Thevelein, J.M.4
  • 44
    • 0025473354 scopus 로고
    • Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast
    • Martegani E, Porro D, Ranzi BM, Alberghina L. 1990. Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast. Biotechnol Bioeng 36: 453-459.
    • (1990) Biotechnol. Bioeng. , vol.36 , pp. 453-459
    • Martegani, E.1    Porro, D.2    Ranzi, B.M.3    Alberghina, L.4
  • 45
    • 0029879360 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
    • Martínez-Pastor MT, Marchler G, Schüller C. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15(9): 2227-2235.
    • (1996) EMBO J. , vol.15 , Issue.9 , pp. 2227-2235
    • Martínez-Pastor, M.T.1    Marchler, G.2    Schüller, C.3
  • 46
    • 0029895340 scopus 로고    scopus 로고
    • Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae
    • Mösch HU, Roberts RL, Fink GR. 1996. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 5352-5356.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 5352-5356
    • Mösch, H.U.1    Roberts, R.L.2    Fink, G.R.3
  • 47
    • 0038765187 scopus 로고    scopus 로고
    • Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae
    • Mösch HU, Fink GR. 1997. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671-684.
    • (1997) Genetics , vol.145 , pp. 671-684
    • Mösch, H.U.1    Fink, G.R.2
  • 48
    • 0026512950 scopus 로고
    • The decisive role of the Saccharomyces cerevisiae cell cycle behaviour for dynamic growth characterization
    • Münch T, Sonnleitner B, Fiechter A. 1992. The decisive role of the Saccharomyces cerevisiae cell cycle behaviour for dynamic growth characterization. J Biotechnol 22: 329-352.
    • (1992) J. Biotechnol. , vol.22 , pp. 329-352
    • Münch, T.1    Sonnleitner, B.2    Fiechter, A.3
  • 50
    • 0344690152 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae
    • Pan X, Heitman J. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19(7): 4874-4887.
    • (1999) Mol. Cell Biol. , vol.19 , Issue.7 , pp. 4874-4887
    • Pan, X.1    Heitman, J.2
  • 51
    • 0036261612 scopus 로고    scopus 로고
    • Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation
    • Pan X, Heitman J. 2002. Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22(12): 3981-3993.
    • (2002) Mol. Cell Biol. , vol.22 , Issue.12 , pp. 3981-3993
    • Pan, X.1    Heitman, J.2
  • 52
    • 0022395239 scopus 로고
    • Phosphorylation and inactivation of yeast fructose-1,6-bisphosphatase by cyclic AMP-dependent protein kinase from yeast
    • Pohlig G, Holzer H. 1985. Phosphorylation and inactivation of yeast fructose-1,6-bisphosphatase by cyclic AMP-dependent protein kinase from yeast. J Biol Chem 260(25): 13818-13823.
    • (1985) J. Biol. Chem. , vol.260 , Issue.25 , pp. 13818-13823
    • Pohlig, G.1    Holzer, H.2
  • 54
    • 0024278876 scopus 로고
    • Oscillations in continuous cultures of budding yeast: A segregated parameter analysis
    • Porro D, Martegani E, Ranzi BM, Alberghina L. 1988. Oscillations in continuous cultures of budding yeast: a segregated parameter analysis. Biotechnol Bioeng 32: 411-417.
    • (1988) Biotechnol. Bioeng. , vol.32 , pp. 411-417
    • Porro, D.1    Martegani, E.2    Ranzi, B.M.3    Alberghina, L.4
  • 55
  • 56
    • 84979445292 scopus 로고
    • The determination of glycogen in yeasts
    • Quain DE. 1981. The determination of glycogen in yeasts. J Inst Brew 87: 289-291.
    • (1981) J. Inst. Brew. , vol.87 , pp. 289-291
    • Quain, D.E.1
  • 58
    • 0032530778 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase
    • Reinders A, Bürckert N, Boller T, Wiemken A, De Virgilio C. 1998. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev 12: 2943-2955.
    • (1998) Genes Dev. , vol.12 , pp. 2943-2955
    • Reinders, A.1    Bürckert, N.2    Boller, T.3    Wiemken, A.4    De Virgilio, C.5
  • 59
    • 0033745888 scopus 로고    scopus 로고
    • Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexokinase-dependent sensing process
    • Rolland F, de Winde JH, Lemaire K, et al. 2000. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexokinase-dependent sensing process. Mol Microbiol 38(2): 348-358.
    • (2000) Mol. Microbiol. , vol.38 , Issue.2 , pp. 348-358
    • Rolland, F.1    de Winde, J.H.2    Lemaire, K.3
  • 60
    • 0035734491 scopus 로고    scopus 로고
    • The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae
    • Rolland F, Wanke V, Cauwenberg L, et al. 2001. The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1(1): 33-45.
    • (2001) FEMS Yeast Res. , vol.1 , Issue.1 , pp. 33-45
    • Rolland, F.1    Wanke, V.2    Cauwenberg, L.3
  • 61
    • 0036281361 scopus 로고    scopus 로고
    • Glucose-sensing and -signalling mechanisms in yeast
    • Rolland F, Winderickx J, Thevelein JM. 2002. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2(2): 183-201.
    • (2002) FEMS Yeast Res. , vol.2 , Issue.2 , pp. 183-201
    • Rolland, F.1    Winderickx, J.2    Thevelein, J.M.3
  • 62
    • 0035938253 scopus 로고    scopus 로고
    • Role of guanine nucleotides in the regulation of the Ras/cAMP pathway in Saccharomyces cerevisiae
    • 1538
    • Rudoni S, Colombo S, Cocceti P, Martegani E. 2001. Role of guanine nucleotides in the regulation of the Ras/cAMP pathway in Saccharomyces cerevisiae. Biochim Biophys Acta 1538: 181-189.
    • (2001) Biochim. Biophys. Acta , pp. 181-189
    • Rudoni, S.1    Colombo, S.2    Cocceti, P.3    Martegani, E.4
  • 63
    • 0029079001 scopus 로고
    • Determination of intracellular trehalose and glycogen in Saccharomyces cerevisiae
    • Schulze U, Larsen ME, Villadsen J. 1995. Determination of intracellular trehalose and glycogen in Saccharomyces cerevisiae. Anal Biochem 228: 143-149.
    • (1995) Anal. Biochem. , vol.228 , pp. 143-149
    • Schulze, U.1    Larsen, M.E.2    Villadsen, J.3
  • 64
    • 15644379802 scopus 로고    scopus 로고
    • 1 phase duration, cyclin expression and reserve carbohydrate metabolism in Saccharomyces cerevisiae
    • 1 phase duration, cyclin expression and reserve carbohydrate metabolism in Saccharomyces cerevisiae. J Bacteriol 179(21): 6560-6565.
    • (1997) J. Bacteriol. , vol.179 , Issue.21 , pp. 6560-6565
    • Silljé, H.H.W.1    ter Schure, E.G.2    Rommens, A.J.M.3
  • 65
    • 0028828645 scopus 로고
    • A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids
    • Simon MM, Pavlik P, Hartig A, et al. 1995. A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. Mol Gen Genet 249(3): 289-296.
    • (1995) Mol. Gen. Genet , vol.249 , Issue.3 , pp. 289-296
    • Simon, M.M.1    Pavlik, P.2    Hartig, A.3
  • 66
    • 0025034980 scopus 로고
    • Intracellular and extracellular levels of cyclic AMP during the cell cycle of Saccharomyces cerevisiae
    • Smith ME, Dickinson R, Wheals AE. 1990. Intracellular and extracellular levels of cyclic AMP during the cell cycle of Saccharomyces cerevisiae. Yeast 6: 53-60.
    • (1990) Yeast , vol.6 , pp. 53-60
    • Smith, M.E.1    Dickinson, R.2    Wheals, A.E.3
  • 67
    • 0022736565 scopus 로고
    • Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis
    • Sonnleitner B, Käppeli O. 1986. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28: 927-937.
    • (1986) Biotechnol. Bioeng. , vol.28 , pp. 927-937
    • Sonnleitner, B.1    Käppeli, O.2
  • 68
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman PT, Sherlock G, Zhang MQ, et al. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273-3297.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 69
    • 0027237551 scopus 로고
    • Saccharomyces cerevisiae cdc15 mutants arrested at a late stage in anaphase are rescued by Xenopus cDNAs encoding N-ras or a protein with β-transducin repeats
    • Spevak W, Keiper BD, Stratowa C, Castanón MJ. 1993. Saccharomyces cerevisiae cdc15 mutants arrested at a late stage in anaphase are rescued by Xenopus cDNAs encoding N-ras or a protein with β-transducin repeats. Mol Cell Biol 13(8): 4953-4966.
    • (1993) Mol. Cell Biol. , vol.13 , Issue.8 , pp. 4953-4966
    • Spevak, W.1    Keiper, B.D.2    Stratowa, C.3    Castanón, M.J.4
  • 70
    • 0000347493 scopus 로고
    • A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. I. Concept
    • Strässle C, Sonnleitner B, Fiechter A. 1988. A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. I. Concept. J Biotechnol 7: 299-318.
    • (1988) J. Biotechnol. , vol.7 , pp. 299-318
    • Strässle, C.1    Sonnleitner, B.2    Fiechter, A.3
  • 71
    • 0024606954 scopus 로고
    • A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. II. Experimental verification
    • Strässle C, Sonnleitner B, Fiechter A. 1989. A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. II. Experimental verification. J Biotechnol 9: 191-208.
    • (1989) J. Biotechnol. , vol.9 , pp. 191-208
    • Strässle, C.1    Sonnleitner, B.2    Fiechter, A.3
  • 72
    • 0025345609 scopus 로고
    • cAMP-dependent phosphorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding
    • Taylor WE, Young ET. 1990. cAMP-dependent phosphorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding. Proc Natl Acad Sci USA 87: 4098-4102.
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 4098-4102
    • Taylor, W.E.1    Young, E.T.2
  • 73
    • 0027380246 scopus 로고
    • In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique
    • Theobald U, Mailinger W, Reuss M, Rizzi M. 1993. In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214: 31-37.
    • (1993) Anal. Biochem. , vol.214 , pp. 31-37
    • Theobald, U.1    Mailinger, W.2    Reuss, M.3    Rizzi, M.4
  • 74
    • 0343471961 scopus 로고    scopus 로고
    • In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations
    • Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. 1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotech Bioeng 55(2): 305-316.
    • (1997) Biotech. Bioeng. , vol.55 , Issue.2 , pp. 305-316
    • Theobald, U.1    Mailinger, W.2    Baltes, M.3    Rizzi, M.4    Reuss, M.5
  • 75
    • 0001890576 scopus 로고
    • Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi
    • Thevelein JM. 1988. Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi. Exp Mycol 12: 1-12.
    • (1988) Exp. Mycol. , vol.12 , pp. 1-12
    • Thevelein, J.M.1
  • 76
    • 0025879946 scopus 로고
    • Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase pathway in yeast: The relationship to nutrient-induced cell cycle control
    • Thevelein JM. 1991. Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5(6): 1301-1307.
    • (1991) Mol. Microbiol. , vol.5 , Issue.6 , pp. 1301-1307
    • Thevelein, J.M.1
  • 77
    • 0032835137 scopus 로고    scopus 로고
    • Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae
    • Thevelein JM, de Winde JH. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33(5): 904-918.
    • (1999) Mol. Microbiol. , vol.33 , Issue.5 , pp. 904-918
    • Thevelein, J.M.1    de Winde, J.H.2
  • 78
    • 0034213536 scopus 로고    scopus 로고
    • Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast
    • Thevelein JM, Cauwenberg L, Colombo S, et al. 2000. Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26: 819-825.
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 819-825
    • Thevelein, J.M.1    Cauwenberg, L.2    Colombo, S.3
  • 80
    • 0015952382 scopus 로고
    • Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in baker's yeast
    • van der Plaat JB. 1974. Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in baker's yeast. Biochem Biophys Res Commun 56(3): 580-587.
    • (1974) Biochem. Biophys. Res. Commun. , vol.56 , Issue.3 , pp. 580-587
    • van der Plaat, J.B.1
  • 82
    • 0024094021 scopus 로고
    • Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae
    • van Doorn J, Valkenburg JAC, Scholte ME, et al. 1988b. Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae. J Bacteriol 170: 4808-4815.
    • (1988) J. Bacteriol. , vol.170 , pp. 4808-4815
    • van Doorn, J.1    Valkenburg, J.A.C.2    Scholte, M.E.3
  • 83
    • 0021071243 scopus 로고
    • Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae
    • Vanoni M, Vai M, Popolo L, Alberghina L. 1983. Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. J Bacteriol 156(3): 1282-1291.
    • (1983) J. Bacteriol. , vol.156 , Issue.3 , pp. 1282-1291
    • Vanoni, M.1    Vai, M.2    Popolo, L.3    Alberghina, L.4
  • 84
    • 0003890897 scopus 로고    scopus 로고
    • Modellgestützte Analyse der Dynamik des Phosphofructokinase-Systems in Saccharomyces cerevisiae
    • PhD Thesis, Universität Stuttgart, Stuttgart, Germany
    • Vaseghi S. 2000. Modellgestützte Analyse der Dynamik des Phosphofructokinase-Systems in Saccharomyces cerevisiae. PhD Thesis, Universität Stuttgart, Stuttgart, Germany.
    • (2000)
    • Vaseghi, S.1
  • 85
    • 0034804472 scopus 로고    scopus 로고
    • Signal transduction dynamics of the protein kinase A-phosphofructokinase-2 system in Saccharomyces cerevisiae
    • Vaseghi S, Macherhammer F, Zibek S, Reuss M. 2001. Signal transduction dynamics of the protein kinase A-phosphofructokinase-2 system in Saccharomyces cerevisiae. Metab Eng 3: 163-172.
    • (2001) Metab. Eng. , vol.3 , pp. 163-172
    • Vaseghi, S.1    Macherhammer, F.2    Zibek, S.3    Reuss, M.4
  • 86
    • 0033569790 scopus 로고    scopus 로고
    • A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose activation of the cAMP pathway through direct inhibition of Gpa2
    • Versele M, de Winde JH, Thevelein JM. 1999. A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J 18(20): 5577-5591.
    • (1999) EMBO J. , vol.18 , Issue.20 , pp. 5577-5591
    • Versele, M.1    de Winde, J.H.2    Thevelein, J.M.3
  • 87
    • 0030988085 scopus 로고    scopus 로고
    • Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p
    • Vidan S, Mitchell AP. 1997. Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Mol Cell Biol 17(5): 2688-2697.
    • (1997) Mol. Cell Biol. , vol.17 , Issue.5 , pp. 2688-2697
    • Vidan, S.1    Mitchell, A.P.2
  • 88
    • 0014653084 scopus 로고
    • Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth
    • von Meyenburg HK. 1969. Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth, Arch Mikrobiol 66: 289-303.
    • (1969) Arch. Mikrobiol. , vol.66 , pp. 289-303
    • von Meyenburg, H.K.1
  • 89
    • 0017701614 scopus 로고
    • Fluctuations in cAMP levels during the cell cycle of Saccharomyces cerevisiae
    • Watson CD, Berry DR. 1977. Fluctuations in cAMP levels during the cell cycle of Saccharomyces cerevisiae. FEMS Microbiol Lett 1: 175-177.
    • (1977) FEMS Microbiol. Lett. , vol.1 , pp. 175-177
    • Watson, C.D.1    Berry, D.R.2
  • 90
    • 0027155830 scopus 로고
    • Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/α as determined by image cytometry
    • Woldringh CL, Huls PG, Vischer NOE. 1993. Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/α as determined by image cytometry. J Bacteriol 175(10): 3174-3181.
    • (1993) J. Bacteriol. , vol.175 , Issue.10 , pp. 3174-3181
    • Woldringh, C.L.1    Huls, P.G.2    Vischer, N.O.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.