메뉴 건너뛰기




Volumn 16, Issue 1, 2003, Pages 101-120

On-line identification and reconstruction of finite automata with generalized recurrent neural networks

Author keywords

Finite automata; On line learning; On line rule extraction; Recurrent neural networks; Supervised learning; System identification

Indexed keywords

ALGORITHMS; FINITE AUTOMATA; LEARNING SYSTEMS; ONLINE SYSTEMS;

EID: 0037254330     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(02)00221-6     Document Type: Review
Times cited : (27)

References (52)
  • 2
    • 0034233325 scopus 로고    scopus 로고
    • Stable behavior in a recurrent neural network for a finite state machine
    • Arai K., Nakano R. Stable behavior in a recurrent neural network for a finite state machine. Neural Networks. 13:2000;667-680.
    • (2000) Neural Networks , vol.13 , pp. 667-680
    • Arai, K.1    Nakano, R.2
  • 3
    • 0003913211 scopus 로고    scopus 로고
    • T. Bäck, D.B. Fogel, & Z. Michalewicz. Bristol and Philadelphia: Institute of Physics Publishing
    • Bäck T., Fogel D.B., Michalewicz Z. Evolutionary computation 1 - Basic algorithms and operators. 2000;Institute of Physics Publishing, Bristol and Philadelphia.
    • (2000) Evolutionary computation 1 - Basic algorithms and operators
  • 4
    • 0029222421 scopus 로고
    • Learning dynamics: System identification for perceptually challenged agents
    • Basye K., Dean T., Kaelbling L.P. Learning dynamics: System identification for perceptually challenged agents. Artificial Intelligence. 72:(1-2):1995;139-171.
    • (1995) Artificial Intelligence , vol.72 , Issue.1-2 , pp. 139-171
    • Basye, K.1    Dean, T.2    Kaelbling, L.P.3
  • 5
    • 0000392660 scopus 로고    scopus 로고
    • Analysis of dynamical recognizers
    • Blair A.D., Pollack J.B. Analysis of dynamical recognizers. Neural Computation. 9:(5):1997;1127-1142.
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 1127-1142
    • Blair, A.D.1    Pollack, J.B.2
  • 6
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • Casey M. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation. 8:(6):1996;1135-1178.
    • (1996) Neural Computation , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.1
  • 7
    • 0012959541 scopus 로고    scopus 로고
    • Correction to proof that recurrent neural networks can robustly recognize only regular languages
    • Casey M. Correction to proof that recurrent neural networks can robustly recognize only regular languages. Neural Computation. 10:1998;1167-1169.
    • (1998) Neural Computation , vol.10 , pp. 1167-1169
    • Casey, M.1
  • 9
    • 0031915593 scopus 로고    scopus 로고
    • Dynamic on-line clustering and state extraction: An approach to symbolic learning
    • Das S., Mozer M. Dynamic on-line clustering and state extraction: An approach to symbolic learning. Neural Networks. 11:(1):1998;53-64.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 53-64
    • Das, S.1    Mozer, M.2
  • 10
    • 0029297148 scopus 로고
    • Learning feedforward neural networks with synaptic correlations
    • Dobnikar A. Learning feedforward neural networks with synaptic correlations. Electrotechnical Review. 62:(5):1995;295-298.
    • (1995) Electrotechnical Review , vol.62 , Issue.5 , pp. 295-298
    • Dobnikar, A.1
  • 11
    • 0003149091 scopus 로고    scopus 로고
    • Recurrent networks: Supervised learning
    • M.A. Arbib. MIT Press: Cambridge, MA
    • Doya K. Recurrent networks: Supervised learning. Arbib M.A. Handbook of brain theory and neural networks. 1998;796-800 Cambridge, MA, MIT Press.
    • (1998) Handbook of brain theory and neural networks , pp. 796-800
    • Doya, K.1
  • 12
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite state automata in recurrent radial basis function networks
    • Frasconi P., Gori M., Maggini M., Soda G. Representation of finite state automata in recurrent radial basis function networks. Machine Learning. 23:1996;5-32.
    • (1996) Machine Learning , vol.23 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 17
    • 0013014729 scopus 로고    scopus 로고
    • On-line identification and rule extraction of finite state automata with recurrent neural networks
    • V. Kurkova, N.C. Steele, R. Neruda, & M. Karny. Vienna, Austria: Springer
    • Gabrijel I., Dobnikar A. On-line identification and rule extraction of finite state automata with recurrent neural networks. Kurkova V., Steele N.C., Neruda R., Karny M. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. 2001;78-81 Springer, Vienna, Austria.
    • (2001) Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms , pp. 78-81
    • Gabrijel, I.1    Dobnikar, A.2
  • 23
    • 0000370416 scopus 로고    scopus 로고
    • LSTM can solve hard long time lag problems
    • M.C. Mozer, M.I. Jordan, & T. Petsche. MIT Press: Cambridge, MA
    • Hochreiter S., Schmidhuber J. LSTM can solve hard long time lag problems. Mozer M.C., Jordan M.I., Petsche T. Advances in neural information processing systems. Vol. 9:1997;473-479 Cambridge, MA, MIT Press.
    • (1997) Advances in neural information processing systems , vol.9 , pp. 473-479
    • Hochreiter, S.1    Schmidhuber, J.2
  • 25
    • 0001039722 scopus 로고
    • An experimental comparison of recurrent neural networks
    • G. Tesauro, D. Touretzky, & T. Leen. Cambridge, MA: MIT Press
    • Horne B.G., Giles C.L. An experimental comparison of recurrent neural networks. Tesauro G., Touretzky D., Leen T. Neural information processing systems. Vol. 7:1995;697 MIT Press, Cambridge, MA.
    • (1995) Neural information processing systems , vol.7 , pp. 697
    • Horne, B.G.1    Giles, C.L.2
  • 26
    • 0030110968 scopus 로고    scopus 로고
    • Bounds on the complexity of recurrent neural network implementations of finite state machines
    • Horne B.G., Hush D.R. Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks. 9:(2):1996;243-252.
    • (1996) Neural Networks , vol.9 , Issue.2 , pp. 243-252
    • Horne, B.G.1    Hush, D.R.2
  • 27
    • 4243546845 scopus 로고    scopus 로고
    • Identification of nonlinear dynamical systems using neural networks
    • O. Omidvar, & D.L. Elliott. San Diego, CA: Academic Press
    • Levin A.U., Narendra K.S. Identification of nonlinear dynamical systems using neural networks. Omidvar O., Elliott D.L. Neural systems for control. 1997;129-160 Academic Press, San Diego, CA.
    • (1997) Neural systems for control , pp. 129-160
    • Levin, A.U.1    Narendra, K.S.2
  • 29
    • 0002463824 scopus 로고
    • Adaptive control using neural networks
    • W.T. III Miller, R.S. Sutton, & P.J. Werbos. Cambridge, MA: MIT Press
    • Narendra K.S. Adaptive control using neural networks. Miller W.T. III, Sutton R.S., Werbos P.J. Neural networks for control. 1990;115-142 MIT Press, Cambridge, MA.
    • (1990) Neural networks for control , pp. 115-142
    • Narendra, K.S.1
  • 30
    • 0029777583 scopus 로고    scopus 로고
    • On-line training of recurrent neural networks with continuous topology adaptation
    • Obradovic D. On-line training of recurrent neural networks with continuous topology adaptation. IEEE Transaction on Neural Networks. 7:(1):1996;222-228.
    • (1996) IEEE Transaction on Neural Networks , vol.7 , Issue.1 , pp. 222-228
    • Obradovic, D.1
  • 31
    • 0029880174 scopus 로고    scopus 로고
    • Extraction of rules from discrete-time recurrent neural networks
    • Omlin C.W., Giles C.L. Extraction of rules from discrete-time recurrent neural networks. Neural Networks. 9:(1):1996;41-52.
    • (1996) Neural Networks , vol.9 , Issue.1 , pp. 41-52
    • Omlin, C.W.1    Giles, C.L.2
  • 33
    • 0031117790 scopus 로고    scopus 로고
    • Exactly learning automata of small cover time
    • Ron D., Rubinfeld R. Exactly learning automata of small cover time. Machine Learning. 27:(1):1997;69-96.
    • (1997) Machine Learning , vol.27 , Issue.1 , pp. 69-96
    • Ron, D.1    Rubinfeld, R.2
  • 35
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feedforward neural networks
    • Shah S., Palmieri F., Datum M. Optimal filtering algorithms for fast learning in feedforward neural networks. Neural Networks. 5:(5):1992;779-787.
    • (1992) Neural Networks , vol.5 , Issue.5 , pp. 779-787
    • Shah, S.1    Palmieri, F.2    Datum, M.3
  • 39
    • 0031128328 scopus 로고    scopus 로고
    • On the computational power of recurrent neural networks for structures
    • Sperduti A. On the computational power of recurrent neural networks for structures. Neural Networks. 10:(3):1997;395-400.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 395-400
    • Sperduti, A.1
  • 40
    • 0003744488 scopus 로고
    • Amsterdam: North-Holland Publishing Company
    • Starke P.H. Abstract automata. 1972;North-Holland Publishing Company, Amsterdam.
    • (1972) Abstract automata
    • Starke, P.H.1
  • 41
    • 0012910988 scopus 로고    scopus 로고
    • Neuro-control design: Optimization aspects
    • O. Omidvar, & D.L. Elliott. San Diego, CA: Academic Press
    • Su H.T., Samad T. Neuro-control design: Optimization aspects. Omidvar O., Elliott D.L. Neural systems for control. 1997;259-288 Academic Press, San Diego, CA.
    • (1997) Neural systems for control , pp. 259-288
    • Su, H.T.1    Samad, T.2
  • 42
    • 0032072476 scopus 로고    scopus 로고
    • Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design
    • Sundareshan M.K., Condarcure T.A. Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design. IEEE Transactions on Neural Networks. 9:(3):1998;354-368.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.3 , pp. 354-368
    • Sundareshan, M.K.1    Condarcure, T.A.2
  • 44
    • 0001770758 scopus 로고
    • Dynamic construction of finite automata from examples using hill-climbing
    • Ann Arbor, MI
    • Tomita M. Dynamic construction of finite automata from examples using hill-climbing. Proceedings of the Fourth Annual Cognitive Science Conference. 1982;105-108. Ann Arbor, MI.
    • (1982) Proceedings of the Fourth Annual Cognitive Science Conference , pp. 105-108
    • Tomita, M.1
  • 47
    • 0033213756 scopus 로고    scopus 로고
    • On redundancy in neural architecture: Dynamics of a simple module-based neural network and initial-state independence
    • Tsutsumi K. On redundancy in neural architecture: Dynamics of a simple module-based neural network and initial-state independence. Neural Networks. 12:1999;1075-1085.
    • (1999) Neural Networks , vol.12 , pp. 1075-1085
    • Tsutsumi, K.1
  • 48
    • 0001682375 scopus 로고
    • Alopex: A correlation-based algorithm for feedforward and recurrent neural networks
    • Unnikrishnan K.P., Venugopal K.P. Alopex: A correlation-based algorithm for feedforward and recurrent neural networks. Neural Computation. 6:1994;469-490.
    • (1994) Neural Computation , vol.6 , pp. 469-490
    • Unnikrishnan, K.P.1    Venugopal, K.P.2
  • 49
    • 0028016631 scopus 로고
    • A recurrent neural network controller and learning algorithm for the on-line learning control of autonomous underwater vehicles
    • Venugopal K.P., Pandya A.S., Sudhakar R. A recurrent neural network controller and learning algorithm for the on-line learning control of autonomous underwater vehicles. Neural Networks. 7:(5):1994;833-846.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 833-846
    • Venugopal, K.P.1    Pandya, A.S.2    Sudhakar, R.3
  • 50
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos P.J. Backpropagation through time: What it does and how to do it. Proceedings of the IEEE. 78:(10):1990;1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 51
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation. 1:1989;270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 52
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Y. Chauvin, & D.E. Rumelhart. Hillsdale, NJ: Lawrence Erlbaum Associates
    • Williams R.J., Zipser D. Gradient-based learning algorithms for recurrent networks and their computational complexity. Chauvin Y., Rumelhart D.E. Backpropagation: Theory, architectures, and applications. 1995;433-486 Lawrence Erlbaum Associates, Hillsdale, NJ.
    • (1995) Backpropagation: Theory, architectures, and applications , pp. 433-486
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.