메뉴 건너뛰기




Volumn 9, Issue 2, 1996, Pages 243-252

Bounds on the complexity of recurrent neural network implementations of finite state machines

Author keywords

automata theory; circuit complexity; finite state machines; logic synthesis; neural networks; recurrent neural networks

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER CIRCUITS; FINITE AUTOMATA; LOGIC DESIGN; SET THEORY;

EID: 0030110968     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/0893-6080(95)00095-X     Document Type: Article
Times cited : (61)

References (27)
  • 2
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural network architecture for time series modeling
    • Back, A., & Tsoi, A. (1991). FIR and IIR synapses, a new neural network architecture for time series modeling. Neural Computation, 3(3), 375-385.
    • (1991) Neural Computation , vol.3 , Issue.3 , pp. 375-385
    • Back, A.1    Tsoi, A.2
  • 3
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.1
  • 4
    • 0000718697 scopus 로고
    • Higher order recurrent networks and grammatical inference
    • D. Touretzky (Ed.). Morgan Kaufmann
    • Giles, C., Sun, G., Chen, H., Lee, Y., & Chen, D. (1990). Higher order recurrent networks and grammatical inference. In D. Touretzky (Ed.) (pp. 380-387). Advances in Neural Information Processing Systems 2. Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 380-387
    • Giles, C.1    Sun, G.2    Chen, H.3    Lee, Y.4    Chen, D.5
  • 6
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science USA, 79, 2554-2558.
    • (1982) Proceedings of the National Academy of Science USA , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 7
    • 0028733320 scopus 로고
    • On the node complexity of neural networks
    • Horne, B., & Hush, D. (1994). On the node complexity of neural networks. Neural Networks, 7(9), 1413-1426.
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1413-1426
    • Horne, B.1    Hush, D.2
  • 8
    • 44049116478 scopus 로고
    • Forward models: Supervised learning with a distal teacher
    • Jordan, M., & Rumelhart, D. (1992). Forward models: supervised learning with a distal teacher. Cognitive Science, 16, 307-354.
    • (1992) Cognitive Science , vol.16 , pp. 307-354
    • Jordan, M.1    Rumelhart, D.2
  • 10
    • 0242427980 scopus 로고
    • Circuits using threshold elements
    • Lupanov, O. (1972). Circuits using threshold elements. Soviet Physics - Doklady, 17(2), 91-93.
    • (1972) Soviet Physics - Doklady , vol.17 , Issue.2 , pp. 91-93
    • Lupanov, O.1
  • 11
    • 0001687394 scopus 로고
    • The synthesis of circuits from threshold elements
    • in Russian
    • Lupanov, O. (1973). The synthesis of circuits from threshold elements. Problemy Kibernetiki, 26, 109-140 (in Russian).
    • (1973) Problemy Kibernetiki , vol.26 , pp. 109-140
    • Lupanov, O.1
  • 12
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W., & Pitts, W. (1943), A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 15
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra, K., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1, 4-27.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.1    Parthasarathy, K.2
  • 16
    • 0001382203 scopus 로고
    • Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms
    • Nerrand, O., Rouseel-Ragot, P., Personnaz, L., Dreyfus, G., & Marcos, S. (1993). Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms. Neural Computation, 5, 165-199.
    • (1993) Neural Computation , vol.5 , pp. 165-199
    • Nerrand, O.1    Rouseel-Ragot, P.2    Personnaz, L.3    Dreyfus, G.4    Marcos, S.5
  • 18
    • 0343405679 scopus 로고
    • Realization of boolean functions in a certain class of threshold element circuits
    • Red'kin, N. (1972). Realization of boolean functions in a certain class of threshold element circuits. Automation and Remote Control, 1252-1256.
    • (1972) Automation and Remote Control , pp. 1252-1256
    • Red'kin, N.1
  • 19
    • 0005803728 scopus 로고
    • Static and dynamic error propagation networks with application to speech coding
    • D. Anderson (Ed.). New York: American Institute of Physics
    • Robinson, A., & Fallside, F. (1988). Static and dynamic error propagation networks with application to speech coding. In D. Anderson (Ed.), Neural information processing systems (pp. 632-641). New York: American Institute of Physics.
    • (1988) Neural Information Processing Systems , pp. 632-641
    • Robinson, A.1    Fallside, F.2
  • 20
    • 33748362040 scopus 로고
    • Neural networks are universal computing devices
    • Rutgers Center for Systems and Control
    • Siegelmann, H., & Sontag, E. (1991). Neural networks are universal computing devices. Technical Report SYCON-91-08, Rutgers Center for Systems and Control.
    • (1991) Technical Report SYCON-91-08
    • Siegelmann, H.1    Sontag, E.2
  • 24
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • Watrous, R., & Kuhn, G. (1992). Induction of finite-state languages using second-order recurrent networks. Neural Computation, 4(3), 406-414.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 406-414
    • Watrous, R.1    Kuhn, G.2
  • 25
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1(2), 270-280.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 27
    • 0014751831 scopus 로고
    • Threshold logic asymptotes
    • Winder, R. (1970). Threshold logic asymptotes. IEEE Transactions on Computers, C-19(4), 349-353.
    • (1970) IEEE Transactions on Computers , vol.C-19 , Issue.4 , pp. 349-353
    • Winder, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.