메뉴 건너뛰기




Volumn 21, Issue 7, 1999, Pages 596-603

Accessing DNA damage in chromatin: Insights from transcription

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; CHROMATIN; DNA DAMAGE; DNA REPAIR; GENETIC TRANSCRIPTION; HUMAN; REVIEW;

EID: 0033166063     PISSN: 02659247     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1521-1878(199907)21:7<596::AID-BIES8>3.0.CO;2-5     Document Type: Review
Times cited : (55)

References (95)
  • 2
    • 0029847278 scopus 로고    scopus 로고
    • Chromatin and transcription
    • Edmondson DG, Roth SY. Chromatin and transcription. FASEB J 1996;10: 1173-1182.
    • (1996) FASEB J , vol.10 , pp. 1173-1182
    • Edmondson, D.G.1    Roth, S.Y.2
  • 3
    • 0003903126 scopus 로고
    • New York: Springer-Verlag
    • van Holde KE. Chromatin. New York: Springer-Verlag; 1989.
    • (1989) Chromatin
    • Van Holde, K.E.1
  • 4
    • 0030297734 scopus 로고    scopus 로고
    • Remodeling chromatin structures for transcription: What happens to the histories?
    • Steger DJ, Workman JL. Remodeling chromatin structures for transcription: what happens to the histories? BioEssays 1996;18:875-884.
    • (1996) BioEssays , vol.18 , pp. 875-884
    • Steger, D.J.1    Workman, J.L.2
  • 6
    • 0030916336 scopus 로고    scopus 로고
    • Whats up and down with histone deacetylation and transcription?
    • Pazin MJ, Kadonaga JT. Whats up and down with histone deacetylation and transcription? Cell 1997;89:325-328.
    • (1997) Cell , vol.89 , pp. 325-328
    • Pazin, M.J.1    Kadonaga, J.T.2
  • 7
    • 0031913215 scopus 로고    scopus 로고
    • Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex
    • Barlev NA, Poloratsky V, Owen-Hughes T, Ying C, Liu L, Workman J, Berger SL. Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex. Mol Cell Biol 1998;18:1349-1358.
    • (1998) Mol Cell Biol , vol.18 , pp. 1349-1358
    • Barlev, N.A.1    Poloratsky, V.2    Owen-Hughes, T.3    Ying, C.4    Liu, L.5    Workman, J.6    Berger, S.L.7
  • 8
    • 0031043565 scopus 로고    scopus 로고
    • Protein complexes for remodeling chromatin
    • Burns LG, Peterson CL. Protein complexes for remodeling chromatin. Biochim Biophys Acta 1997;1350:159-168.
    • (1997) Biochim Biophys Acta , vol.1350 , pp. 159-168
    • Burns, L.G.1    Peterson, C.L.2
  • 9
    • 0029157378 scopus 로고
    • Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions
    • Eisen JA, Sweder KS, Hanawalt PC. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 1995;23:2715-2723.
    • (1995) Nucleic Acids Res , vol.23 , pp. 2715-2723
    • Eisen, J.A.1    Sweder, K.S.2    Hanawalt, P.C.3
  • 10
    • 0026641776 scopus 로고
    • Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection
    • Winston F, Carlson M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 1992;8:387-391.
    • (1992) Trends Genet , vol.8 , pp. 387-391
    • Winston, F.1    Carlson, M.2
  • 11
    • 0028467446 scopus 로고
    • Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex
    • Cote J, Quinn J, Workman JL, Peterson CL. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 1994;265:53-60.
    • (1994) Science , vol.265 , pp. 53-60
    • Cote, J.1    Quinn, J.2    Workman, J.L.3    Peterson, C.L.4
  • 12
    • 0028093378 scopus 로고
    • Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex
    • Kwon H, Imbalzano AN, Khavarl PA, Kingston, RE, Green MR. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 1994;370:477-480.
    • (1994) Nature , vol.370 , pp. 477-480
    • Kwon, H.1    Imbalzano, A.N.2    Khavarl, P.A.3    Kingston, R.E.4    Green, M.R.5
  • 13
    • 0030842478 scopus 로고    scopus 로고
    • The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo
    • Burns LG, Peterson CL. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol 1997;17:4811-4819.
    • (1997) Mol Cell Biol , vol.17 , pp. 4811-4819
    • Burns, L.G.1    Peterson, C.L.2
  • 14
    • 0029914495 scopus 로고    scopus 로고
    • Multiple switches to turn on chromatin
    • Peterson CL. Multiple SWItches to turn on chromatin. Curr Opin Genet Dev 1996;6:171-175.
    • (1996) Curr Opin Genet Dev , vol.6 , pp. 171-175
    • Peterson, C.L.1
  • 15
    • 0029826906 scopus 로고    scopus 로고
    • Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex
    • Owen-Hughes T, Utley RT, Cote J, Peterson CL, Workman JL. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex Science 1996;273:513-516.
    • (1996) Science , vol.273 , pp. 513-516
    • Owen-Hughes, T.1    Utley, R.T.2    Cote, J.3    Peterson, C.L.4    Workman, J.L.5
  • 16
    • 0032574802 scopus 로고    scopus 로고
    • Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding
    • Cote J, Peterson CL, Workman JL. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci USA 1998;95:4947-4952.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 4947-4952
    • Cote, J.1    Peterson, C.L.2    Workman, J.L.3
  • 17
    • 1842375739 scopus 로고    scopus 로고
    • SWI/SNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding
    • Utley RT, Cote J, Owen-Hughes T, Workman JL. SWI/SNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J Biol Chem 1997;272:12642-12649.
    • (1997) J Biol Chem , vol.272 , pp. 12642-12649
    • Utley, R.T.1    Cote, J.2    Owen-Hughes, T.3    Workman, J.L.4
  • 18
    • 0030971868 scopus 로고    scopus 로고
    • Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix
    • Reyes JC, Muchardt C, Yaniv M. Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J Cell Biol 1997;137:263-274.
    • (1997) J Cell Biol , vol.137 , pp. 263-274
    • Reyes, J.C.1    Muchardt, C.2    Yaniv, M.3
  • 19
    • 0027048595 scopus 로고
    • Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors
    • Yoshinaga SK, Peterson CL, Herskowitz I, Yamamoto KR. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 1992;258:1598-1604.
    • (1992) Science , vol.258 , pp. 1598-1604
    • Yoshinaga, S.K.1    Peterson, C.L.2    Herskowitz, I.3    Yamamoto, K.R.4
  • 20
    • 1842369150 scopus 로고    scopus 로고
    • Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex
    • Ostalund Farrants A, Blomquist P, Kwon H, Wrange O. Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol Cell Biol 1997;17:895-905.
    • (1997) Mol Cell Biol , vol.17 , pp. 895-905
    • Ostalund Farrants, A.1    Blomquist, P.2    Kwon, H.3    Wrange, O.4
  • 22
    • 0030881740 scopus 로고    scopus 로고
    • Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression
    • Pollard KJ, Peterson CL. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol 1997;17:6212-6222.
    • (1997) Mol Cell Biol , vol.17 , pp. 6212-6222
    • Pollard, K.J.1    Peterson, C.L.2
  • 24
    • 0030946972 scopus 로고    scopus 로고
    • Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression
    • Cao Y, Cairns BR, Kornberg RD, Laurent BC. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol 1997;17:3323-3334.
    • (1997) Mol Cell Biol , vol.17 , pp. 3323-3334
    • Cao, Y.1    Cairns, B.R.2    Kornberg, R.D.3    Laurent, B.C.4
  • 25
    • 0030952319 scopus 로고    scopus 로고
    • Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Saccharomyces cerevisiae
    • Treich I, Carlson M. Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Saccharomyces cerevisiae. Mol Cell Biol 1997;17:1768-1775.
    • (1997) Mol Cell Biol , vol.17 , pp. 1768-1775
    • Treich, I.1    Carlson, M.2
  • 26
    • 0029562736 scopus 로고
    • Purification and properties of an ATP-dependent nucleosome remodeling factor
    • Tsukiyama T, Wu C. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 1995;83:1011-1020.
    • (1995) Cell , vol.83 , pp. 1011-1020
    • Tsukiyama, T.1    Wu, C.2
  • 27
    • 0029618369 scopus 로고
    • ISWI, a member of the SWI/SNF2 ATPase family, encodes the 140kDa subunit of the nucleosome remodeling factor
    • Tsukiyama T, Daniel C, Tamkun J, Wu C. ISWI, a member of the SWI/SNF2 ATPase family, encodes the 140kDa subunit of the nucleosome remodeling factor. Cell 1995;83:1021-1026.
    • (1995) Cell , vol.83 , pp. 1021-1026
    • Tsukiyama, T.1    Daniel, C.2    Tamkun, J.3    Wu, C.4
  • 28
    • 0027295019 scopus 로고
    • The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation
    • Laurent BC, Treich I, Carlson M. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation Genes Dev 1993;7:583-591.
    • (1993) Genes Dev , vol.7 , pp. 583-591
    • Laurent, B.C.1    Treich, I.2    Carlson, M.3
  • 29
    • 0030741529 scopus 로고    scopus 로고
    • Role of histone tails in nucleosome remodeling by Drosophila NURF
    • Georgel PT, Tsukiyama T, Wu C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J 1997;16:4717-4726.
    • (1997) EMBO J , vol.16 , pp. 4717-4726
    • Georgel, P.T.1    Tsukiyama, T.2    Wu, C.3
  • 30
    • 0031444148 scopus 로고    scopus 로고
    • ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor
    • Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 1997;90:145-155.
    • (1997) Cell , vol.90 , pp. 145-155
    • Ito, T.1    Bulger, M.2    Pazin, M.J.3    Kobayashi, R.4    Kadonaga, J.T.5
  • 31
    • 0030839857 scopus 로고    scopus 로고
    • Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II
    • Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 1997;388:598-602.
    • (1997) Nature , vol.388 , pp. 598-602
    • Varga-Weisz, P.D.1    Wilm, M.2    Bonte, E.3    Dumas, K.4    Mann, M.5    Becker, P.B.6
  • 32
    • 0029892790 scopus 로고    scopus 로고
    • DNA excision repair
    • Sancar A. DNA excision repair. Annu Rev Biochem 1996;65:43-81.
    • (1996) Annu Rev Biochem , vol.65 , pp. 43-81
    • Sancar, A.1
  • 33
    • 0027351913 scopus 로고
    • Distribution and repair of photolesions in DNA: Genetic consequences and the role of sequence context
    • Sage E. Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem Photobiol 1993;57: 163-174.
    • (1993) Photochem Photobiol , vol.57 , pp. 163-174
    • Sage, E.1
  • 35
    • 0030013201 scopus 로고    scopus 로고
    • Relationships between DNA repair and transcription
    • Friedberg E.C. Relationships between DNA repair and transcription. Annu Rev Biochem 1996;65:15-42.
    • (1996) Annu Rev Biochem , vol.65 , pp. 15-42
    • Friedberg, E.C.1
  • 36
    • 0021905437 scopus 로고
    • DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall
    • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 1985;40:359-369.
    • (1985) Cell , vol.40 , pp. 359-369
    • Bohr, V.A.1    Smith, C.A.2    Okumoto, D.S.3    Hanawalt, P.C.4
  • 37
    • 0023663101 scopus 로고
    • Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene
    • Mellon I, Spivak G, Hanawalt PC. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 1987;51:241-249.
    • (1987) Cell , vol.51 , pp. 241-249
    • Mellon, I.1    Spivak, G.2    Hanawalt, P.C.3
  • 38
    • 0025316080 scopus 로고
    • Site-specific DNA repair at the nucleosome level in a yeast minichromosome
    • Smerdon MJ, Thoma F. Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 1990;61.675-684.
    • (1990) Cell , vol.61 , pp. 675-684
    • Smerdon, M.J.1    Thoma, F.2
  • 39
    • 0026486603 scopus 로고
    • Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription
    • Sweder KS, Hanawalt PC. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc Natl Acad Sci USA 1992;89: 10696-10700.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 10696-10700
    • Sweder, K.S.1    Hanawalt, P.C.2
  • 40
    • 0025733144 scopus 로고
    • Preferential repair of DNA damage on the transcribed strand of the human metallothionein genes requires RNA polymerase II
    • Leadon SA, Lawrence DA. Preferential repair of DNA damage on the transcribed strand of the human metallothionein genes requires RNA polymerase II. Mutat Res 1991;255:67-78.
    • (1991) Mutat Res , vol.255 , pp. 67-78
    • Leadon, S.A.1    Lawrence, D.A.2
  • 41
    • 0026440707 scopus 로고
    • Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II
    • Leadon SA, Lawrence DA. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem 1992;267: 23175-23182.
    • (1992) J Biol Chem , vol.267 , pp. 23175-23182
    • Leadon, S.A.1    Lawrence, D.A.2
  • 42
    • 0025610725 scopus 로고
    • Transcription preferentially inhibits nucleotide excision repair of the template DNA strand in vitro
    • Selby CP, Sancar A. Transcription preferentially inhibits nucleotide excision repair of the template DNA strand in vitro. J Biol Chem 1990;265: 21330-21336.
    • (1990) J Biol Chem , vol.265 , pp. 21330-21336
    • Selby, C.P.1    Sancar, A.2
  • 43
    • 0026354699 scopus 로고
    • Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: In vitro complementation with purified coupling factor
    • Selby CP, Witkin EM, Sancar A. Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci USA 1991;88: 11574-11578.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 11574-11578
    • Selby, C.P.1    Witkin, E.M.2    Sancar, A.3
  • 44
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription-repair coupling
    • Selby CP, Sancar A. Molecular mechanism of transcription-repair coupling. Science 1993;260:53-58.
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.P.1    Sancar, A.2
  • 45
    • 0026465665 scopus 로고
    • ERCC6, a member of a subfamily of putative helicases is involved in cockaynes syndrome and preferential repair of active genes
    • Troelstra C, van Gool A, deWit J, Vermeulen W, Bootsma D, Hoeijmakers JHJ. ERCC6, a member of a subfamily of putative helicases is involved in Cockaynes syndrome and preferential repair of active genes. Cell 1992;71: 939-953.
    • (1992) Cell , vol.71 , pp. 939-953
    • Troelstra, C.1    Van Gool, A.2    DeWit, J.3    Vermeulen, W.4    Bootsma, D.5    Hoeijmakers, J.H.J.6
  • 48
    • 0029793038 scopus 로고    scopus 로고
    • Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human cockayne syndrome A (CSA) gene
    • Bhatia PK, Verhage RA, Brouwer J, Friedberg EC. Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene. J Bacteriol 1996;178: 5977-5988.
    • (1996) J Bacteriol , vol.178 , pp. 5977-5988
    • Bhatia, P.K.1    Verhage, R.A.2    Brouwer, J.3    Friedberg, E.C.4
  • 49
    • 0031020871 scopus 로고    scopus 로고
    • Human transcription-repair coupling factor CSB/ ERCC6 is a DMA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II
    • Selby CP, Sancar A. Human transcription-repair coupling factor CSB/ ERCC6 is a DMA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J Biol Chem 1997;272:1885-1890.
    • (1997) J Biol Chem , vol.272 , pp. 1885-1890
    • Selby, C.P.1    Sancar, A.2
  • 50
    • 0030667078 scopus 로고    scopus 로고
    • Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes
    • Tantin D, Kansal A, Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol Cell Biol 1997;17:6803-6814.
    • (1997) Mol Cell Biol , vol.17 , pp. 6803-6814
    • Tantin, D.1    Kansal, A.2    Carey, M.3
  • 51
    • 0030804783 scopus 로고    scopus 로고
    • RNA polymerase II stalled at a thymine dinner: Footprint and effect on excision repair
    • Selby CP, Drapkin R, Reinberg D, Sancar A. RNA polymerase II stalled at a thymine dinner: footprint and effect on excision repair. Nucleic Acids Res 1997;25:787-793.
    • (1997) Nucleic Acids Res , vol.25 , pp. 787-793
    • Selby, C.P.1    Drapkin, R.2    Reinberg, D.3    Sancar, A.4
  • 52
    • 0028106162 scopus 로고
    • Transcript cleavage by RNA polymerase II arrested by a cyclobufane pyrimidine dimer in the DNA template
    • Donahue BA, Yin S, Taylor JS, Reines D, Hanawalt PC. Transcript cleavage by RNA polymerase II arrested by a cyclobufane pyrimidine dimer in the DNA template. Proc Natl Acad Sci USA 1994;91:8502-8506.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 8502-8506
    • Donahue, B.A.1    Yin, S.2    Taylor, J.S.3    Reines, D.4    Hanawalt, P.C.5
  • 54
    • 0031943276 scopus 로고    scopus 로고
    • Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: Complementation of inhibition by holo-TFIIH and requirement for RAD26
    • You Z, Feaver WJ, Friedberg EC. Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by holo-TFIIH and requirement for RAD26. Mol Cell Biol 1998;18:2668-2676.
    • (1998) Mol Cell Biol , vol.18 , pp. 2668-2676
    • You, Z.1    Feaver, W.J.2    Friedberg, E.C.3
  • 55
    • 15844367100 scopus 로고    scopus 로고
    • Human cyclin-dependent kinase-activating kinase exists in three distinct complexes
    • Drapkin R, Le Roy G, Cho H, Akoulitchev S, Reinberg D. Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc Natl Acad Sci USA 1996;93:6488-6493.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 6488-6493
    • Drapkin, R.1    Le Roy, G.2    Cho, H.3    Akoulitchev, S.4    Reinberg, D.5
  • 56
    • 0029870677 scopus 로고    scopus 로고
    • Reaction mechanism of human DNA repair excision nuclease
    • Mu D, Hsu DS, Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 1996;271:8285-8294.
    • (1996) J Biol Chem , vol.271 , pp. 8285-8294
    • Mu, D.1    Hsu, D.S.2    Sancar, A.3
  • 58
    • 0029974576 scopus 로고    scopus 로고
    • Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome
    • Guzder SN, Sung P, Prakash L, Prakash S. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome J Biol Chem 1996;271:8903-8910.
    • (1996) J Biol Chem , vol.271 , pp. 8903-8910
    • Guzder, S.N.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 59
    • 0030856090 scopus 로고    scopus 로고
    • Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor
    • Guzder SN, Sung P, Prakash L, Prakash S. Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J Biol Chem 1997;272: 21665-21668.
    • (1997) J Biol Chem , vol.272 , pp. 21665-21668
    • Guzder, S.N.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 60
    • 0029074137 scopus 로고
    • Recycling of the general transcription factors during RNA polymerase II transcription
    • Zawel L, Kumar P, Reinberg D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 1995;9:1479-1490.
    • (1995) Genes Dev , vol.9 , pp. 1479-1490
    • Zawel, L.1    Kumar, P.2    Reinberg, D.3
  • 61
    • 0030817140 scopus 로고    scopus 로고
    • DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H
    • Nocentini S, Coin F, Saijo M, Tanaka K, Egly J-M. DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H. J Biol Chem 1997;272:22991-22994.
    • (1997) J Biol Chem , vol.272 , pp. 22991-22994
    • Nocentini, S.1    Coin, F.2    Saijo, M.3    Tanaka, K.4    Egly, J.-M.5
  • 62
    • 0030838622 scopus 로고    scopus 로고
    • Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae
    • Tijsterman M, Verhage RA, van de Putte P, Tasseron-de Jong JG, Brouwer J. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997;94:8027-8032.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 8027-8032
    • Tijsterman, M.1    Verhage, R.A.2    Van De Putte, P.3    Tasseron-De Jong, J.G.4    Brouwer, J.5
  • 63
    • 0030024358 scopus 로고    scopus 로고
    • DNA repair domains within a human gene: Selective repair of sequences near the transcription initiation site
    • Tu Y, Tornaletti S, Pfeifer GP. DNA repair domains within a human gene: selective repair of sequences near the transcription initiation site. EMBO J 1996;15:675-683.
    • (1996) EMBO J , vol.15 , pp. 675-683
    • Tu, Y.1    Tornaletti, S.2    Pfeifer, G.P.3
  • 64
    • 0032565540 scopus 로고    scopus 로고
    • The transcription-repair coupling factor CSA is required for efficient repair only during the elongation stages of RNA polymerase II transcription
    • Tu Y, Bates S, Pfeifer G.P. The transcription-repair coupling factor CSA is required for efficient repair only during the elongation stages of RNA polymerase II transcription. Mutat Res 1998;400:143-151.
    • (1998) Mutat Res , vol.400 , pp. 143-151
    • Tu, Y.1    Bates, S.2    Pfeifer, G.P.3
  • 65
    • 0031080462 scopus 로고    scopus 로고
    • Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment
    • Pfeifer GP. Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem Photobiol 1997; 65:270-283.
    • (1997) Photochem Photobiol , vol.65 , pp. 270-283
    • Pfeifer, G.P.1
  • 66
    • 0026000368 scopus 로고
    • Gene specific DNA repair
    • Bohr VA. Gene specific DNA repair Carcinogenesis 1991;12:1983-1992.
    • (1991) Carcinogenesis , vol.12 , pp. 1983-1992
    • Bohr, V.A.1
  • 69
    • 0031588941 scopus 로고    scopus 로고
    • Excision repair at the level of the nucleotide in the Saccharomyces cerevisiae MFA2 gene: Mapping of where enhanced repair in the transcribed strand begins or ends and identification of only a partial Rad16 requisite for repairing upstream control sequences
    • Teng Y, Li S, Waters R, Reed SH Excision repair at the level of the nucleotide in the Saccharomyces cerevisiae MFA2 gene: mapping of where enhanced repair in the transcribed strand begins or ends and identification of only a partial Rad16 requisite for repairing upstream control sequences. J Mol Biol 1997;267:324-337.
    • (1997) J Mol Biol , vol.267 , pp. 324-337
    • Teng, Y.1    Li, S.2    Waters, R.3    Reed, S.H.4
  • 70
    • 0026757373 scopus 로고
    • Transcription, nucleosome stability, and DNA repair in a yeast minichromosome
    • Bedoyan J, Gupta R, Thoma F, Smerdon MJ. Transcription, nucleosome stability, and DNA repair in a yeast minichromosome. J Biol Chem 1992;267:5996-6005.
    • (1992) J Biol Chem , vol.267 , pp. 5996-6005
    • Bedoyan, J.1    Gupta, R.2    Thoma, F.3    Smerdon, M.J.4
  • 71
    • 0015959271 scopus 로고
    • Preferential DNA repair in human cells
    • Wilkins RJ, Hart RW. Preferential DNA repair in human cells. Nature 1974;247:35-36.
    • (1974) Nature , vol.247 , pp. 35-36
    • Wilkins, R.J.1    Hart, R.W.2
  • 72
    • 0030941116 scopus 로고    scopus 로고
    • Chromatin structure modulates DNA repair by photolyase in vivo
    • Suter B, Livingstone-Zatchej M, Thoma F. Chromatin structure modulates DNA repair by photolyase in vivo. EMBO J 1997;16:2150-2160.
    • (1997) EMBO J , vol.16 , pp. 2150-2160
    • Suter, B.1    Livingstone-Zatchej, M.2    Thoma, F.3
  • 73
    • 0025719346 scopus 로고
    • Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes
    • Wang Z, Wu X, Friedberg EC. Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J Biol Chem 1991;266:22472-22478.
    • (1991) J Biol Chem , vol.266 , pp. 22472-22478
    • Wang, Z.1    Wu, X.2    Friedberg, E.C.3
  • 74
    • 0027463258 scopus 로고
    • Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. I. Development of a cell-free system detecting excision repair of UV-irradiated SV40 chromosomes
    • Sugasawa K, Masutani C, Hanaoka F. Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. I. Development of a cell-free system detecting excision repair of UV-irradiated SV40 chromosomes. J Biol Chem 1993;268:9098-9104.
    • (1993) J Biol Chem , vol.268 , pp. 9098-9104
    • Sugasawa, K.1    Masutani, C.2    Hanaoka, F.3
  • 75
    • 0024383760 scopus 로고
    • Enhanced DNA repair synthesis in hyperacetylated nucleosomes
    • Ramanathan B, Smerdon MJ. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem 1989;264:11026-11034.
    • (1989) J Biol Chem , vol.264 , pp. 11026-11034
    • Ramanathan, B.1    Smerdon, M.J.2
  • 76
    • 0030798002 scopus 로고    scopus 로고
    • Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene
    • Wellinger RE, Thoma F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO J 1997;16:5046-5056.
    • (1997) EMBO J , vol.16 , pp. 5046-5056
    • Wellinger, R.E.1    Thoma, F.2
  • 77
    • 0032472378 scopus 로고    scopus 로고
    • Site-specific repair of cyclobutane pyrimidine dimers in a positioned nucleosome by photolyase and T4 endonuclease V in vitro
    • Schieferstein U, Thoma F. Site-specific repair of cyclobutane pyrimidine dimers in a positioned nucleosome by photolyase and T4 endonuclease V in vitro. EMBO J 1998;17:306-316.
    • (1998) EMBO J , vol.17 , pp. 306-316
    • Schieferstein, U.1    Thoma, F.2
  • 78
    • 0032601589 scopus 로고    scopus 로고
    • Modulation of DNA damage and DNA repair in chromatin
    • Moldave K, editor. Academic Press, Inc.
    • Smerdon MJ, Conconi A. Modulation of DNA damage and DNA repair in chromatin. In: Moldave K, editor. Progress in nucleic acids research and molecular biology, Vol. 62. Academic Press, Inc.; 1999. p 227-255.
    • (1999) Progress in Nucleic Acids Research and Molecular Biology , vol.62 , pp. 227-255
    • Smerdon, M.J.1    Conconi, A.2
  • 79
    • 0025410310 scopus 로고
    • UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes
    • Gale JM, Smerdon MJ. UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem Photobiol 1990;51:411-417.
    • (1990) Photochem Photobiol , vol.51 , pp. 411-417
    • Gale, J.M.1    Smerdon, M.J.2
  • 80
    • 0025248628 scopus 로고
    • Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin
    • Mitchell DL, Nguyen TD, Cleaver JE. Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin. J Biol Chem 1990;265:5353-5356.
    • (1990) J Biol Chem , vol.265 , pp. 5353-5356
    • Mitchell, D.L.1    Nguyen, T.D.2    Cleaver, J.E.3
  • 81
    • 0025340988 scopus 로고
    • DNA repair within nucleosome cores of UV-irradiated human cells
    • Jensen KA, Smerdon MJ. DNA repair within nucleosome cores of UV-irradiated human cells. Biochemistry 1990;29:4773-4782.
    • (1990) Biochemistry , vol.29 , pp. 4773-4782
    • Jensen, K.A.1    Smerdon, M.J.2
  • 82
    • 0027378279 scopus 로고
    • Unfolding of nucleosome cores dramatically changes the distribution of ultraviolet photoproducts in DNA
    • Brown WB, Libertini LJ, Suquet C, Small EW, Smerdon MJ. Unfolding of nucleosome cores dramatically changes the distribution of ultraviolet photoproducts in DNA. Biochemistry 1993;32:10527-10531.
    • (1993) Biochemistry , vol.32 , pp. 10527-10531
    • Brown, W.B.1    Libertini, L.J.2    Suquet, C.3    Small, E.W.4    Smerdon, M.J.5
  • 83
    • 0002857653 scopus 로고
    • DNA excision repair at the nucleosome level of chromatin
    • Lambert MW, Laval J, editors. New York: Plenum Press
    • Smerdon MJ. DNA excision repair at the nucleosome level of chromatin. In: Lambert MW, Laval J, editors. DNA repair mechanisms and their biological implications in mammalian cells. New York: Plenum Press; 1989. p 271-293.
    • (1989) DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells , pp. 271-293
    • Smerdon, M.J.1
  • 84
    • 0019132228 scopus 로고
    • Distribution within chromatin of deoxyribonucleic acid repair synthesis occurring at different times after ultraviolet radiation
    • Smerdon MJ, Lieberman MW. Distribution within chromatin of deoxyribonucleic acid repair synthesis occurring at different times after ultraviolet radiation. Biochemistry 1980;19:2992-3000.
    • (1980) Biochemistry , vol.19 , pp. 2992-3000
    • Smerdon, M.J.1    Lieberman, M.W.2
  • 85
    • 0022617271 scopus 로고
    • Completion of excision repair in human cells. Relationship between ligation and nucleosome formation
    • Smerdon MJ Completion of excision repair in human cells. Relationship between ligation and nucleosome formation. J Biol Chem 1986;261:244-252.
    • (1986) J Biol Chem , vol.261 , pp. 244-252
    • Smerdon, M.J.1
  • 87
    • 0030710190 scopus 로고    scopus 로고
    • Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair
    • Gaillard P-HL, Moggs JG, Roche DMJ, Quivy J-P, Becker PB, Wood RD, Almouzni G. Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J 1997;16:6281-6289.
    • (1997) EMBO J , vol.16 , pp. 6281-6289
    • Gaillard, P.-H.1    Moggs, J.G.2    Roche, D.M.J.3    Quivy, J.-P.4    Becker, P.B.5    Wood, R.D.6    Almouzni, G.7
  • 88
    • 0025743868 scopus 로고
    • Relation between carcinogenesis, chromatin structure and poly (ADP-ribosylation)
    • Boulikas T. Relation between carcinogenesis, chromatin structure and poly (ADP-ribosylation). Anticancer Res 1991;11:489-528.
    • (1991) Anticancer Res , vol.11 , pp. 489-528
    • Boulikas, T.1
  • 89
    • 0026776003 scopus 로고
    • Poly ADP-ribosylation: A histone shuttle mechanism in DNA excision repair
    • Althaus FR. Poly ADP-ribosylation: a histone shuttle mechanism in DNA excision repair. J Cell Sci 1992;102:663-670.
    • (1992) J Cell Sci , vol.102 , pp. 663-670
    • Althaus, F.R.1
  • 90
    • 0027999206 scopus 로고
    • The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae
    • Verhage R, Zeeman A, de Groot N. Gleig F, Bang DD, van de Putte P, Brouwer J. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol Cell Biol 1994;14:6135-6142.
    • (1994) Mol Cell Biol , vol.14 , pp. 6135-6142
    • Verhage, R.1    Zeeman, A.2    De Groot, N.3    Gleig, F.4    Bang, D.D.5    Van De Putte, P.6    Brouwer, J.7
  • 91
    • 10144261891 scopus 로고    scopus 로고
    • Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution
    • Tijsterman M, Tasseron-de Jong JG, van de Putte P, Brouwer J. Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution. Nucleic Acids Res 1996;24:3499-3506.
    • (1996) Nucleic Acids Res , vol.24 , pp. 3499-3506
    • Tijsterman, M.1    Tasseron-De Jong, J.G.2    Van De Putte, P.3    Brouwer, J.4
  • 92
    • 0031039087 scopus 로고    scopus 로고
    • The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: Requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products
    • Wang Z, Wei S, Reed SH, Wu X, Svejstrup JQ, Feaver WJ, Kornberg RD, Friedberg EC. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol 1997;17:635-643.
    • (1997) Mol Cell Biol , vol.17 , pp. 635-643
    • Wang, Z.1    Wei, S.2    Reed, S.H.3    Wu, X.4    Svejstrup, J.Q.5    Feaver, W.J.6    Kornberg, R.D.7    Friedberg, E.C.8
  • 93
    • 0029911190 scopus 로고    scopus 로고
    • Assessing the requirements for nucleotide excision repair proteins of Saccharomyces cerevisiae in an in vitro system
    • He Z, Wong JMS, Maniar HS, Brill SJ, Ingles CJ. Assessing the requirements for nucleotide excision repair proteins of Saccharomyces cerevisiae in an in vitro system. J Biol Chem 1996;271:28243-28249.
    • (1996) J Biol Chem , vol.271 , pp. 28243-28249
    • He, Z.1    Wong, J.M.S.2    Maniar, H.S.3    Brill, S.J.4    Ingles, C.J.5
  • 94
    • 0028109333 scopus 로고
    • Interaction of the yeast RAD7 and SIR3 proteins: Implications for DNA repair and chromatin structure
    • Paetkau DW, Riese JA, MacMorran WS, Woods RA, Gietz RD. Interaction of the yeast RAD7 and SIR3 proteins: implications for DNA repair and chromatin structure. Genes Dev 1994;8:2035-2045.
    • (1994) Genes Dev , vol.8 , pp. 2035-2045
    • Paetkau, D.W.1    Riese, J.A.2    MacMorran, W.S.3    Woods, R.A.4    Gietz, R.D.5
  • 95
    • 0026580654 scopus 로고
    • Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation
    • Schild D, Glassner BJ, Mortimer RK, Carlson M, Laurent BC. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. Yeast 1992;8:385-395.
    • (1992) Yeast , vol.8 , pp. 385-395
    • Schild, D.1    Glassner, B.J.2    Mortimer, R.K.3    Carlson, M.4    Laurent, B.C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.