메뉴 건너뛰기




Volumn 179, Issue 24, 1997, Pages 7644-7652

The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids

Author keywords

[No Author keywords available]

Indexed keywords

ALANINE; AMINO ACID; ISOLEUCINE; LEUCINE; NITROGEN; PROLINE; TRANSCRIPTION FACTOR GATA 1; ZINC FINGER PROTEIN;

EID: 0030735451     PISSN: 00219193     EISSN: None     Source Type: Journal    
DOI: 10.1128/jb.179.24.7644-7652.1997     Document Type: Article
Times cited : (17)

References (77)
  • 1
    • 0023392267 scopus 로고
    • A method for gene disruption that allows repeated use of a URA3 selection in the construction of multiply disrupted yeast strains
    • Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of a URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541-545.
    • (1987) Genetics , vol.116 , pp. 541-545
    • Alani, E.1    Cao, L.2    Kleckner, N.3
  • 4
    • 0028883473 scopus 로고
    • TFE3 contains two activation domains, one acidic and the other proline-rich, that synergistically activate transcription
    • Artandi, S. E., K. Merrell, N. Avitahl, K. K. Wong, and K. Calame. 1995. TFE3 contains two activation domains, one acidic and the other proline-rich, that synergistically activate transcription. Nucleic Acids Res. 23:3865-3871.
    • (1995) Nucleic Acids Res. , vol.23 , pp. 3865-3871
    • Artandi, S.E.1    Merrell, K.2    Avitahl, N.3    Wong, K.K.4    Calame, K.5
  • 5
    • 0027295462 scopus 로고
    • Drosophila tissue-specific transcription factor NTF-1 contains a novel isoleucine-rich activation motif
    • Attardi, L. D., and R. Tjian. 1993. Drosophila tissue-specific transcription factor NTF-1 contains a novel isoleucine-rich activation motif. Genes Dev. 7:1341-1353.
    • (1993) Genes Dev. , vol.7 , pp. 1341-1353
    • Attardi, L.D.1    Tjian, R.2
  • 6
    • 0027945048 scopus 로고
    • Mutational analysis of the transcription activation domain of RelA: Identification of a highly synergistic minimal acidic activation module
    • Blair, W. S., H. P. Bogerd, S. J. Madore, and B. R. Cullen. 1994. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol. Cell. Biol. 14:7226-7234.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 7226-7234
    • Blair, W.S.1    Bogerd, H.P.2    Madore, S.J.3    Cullen, B.R.4
  • 7
    • 0029881387 scopus 로고    scopus 로고
    • Synergistic enhancement of both initiation and elongation by acidic transcription activation domain
    • Blair, W. S., R. A. Fridell, and B. R. Cullen. 1996. Synergistic enhancement of both initiation and elongation by acidic transcription activation domain. EMBO J. 15:1658-1665.
    • (1996) EMBO J. , vol.15 , pp. 1658-1665
    • Blair, W.S.1    Fridell, R.A.2    Cullen, B.R.3
  • 9
    • 0029785920 scopus 로고    scopus 로고
    • Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae
    • Blinder, D., P. Coschigano, and B. Magasanik. 1996. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178:4734-4736.
    • (1996) J. Bacteriol. , vol.178 , pp. 4734-4736
    • Blinder, D.1    Coschigano, P.2    Magasanik, B.3
  • 10
    • 0029070939 scopus 로고
    • Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene
    • Blinder, D., and B. Magasanik. 1995. Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene. J. Bacteriol. 177:4190-4193.
    • (1995) J. Bacteriol. , vol.177 , pp. 4190-4193
    • Blinder, D.1    Magasanik, B.2
  • 11
    • 0026360180 scopus 로고
    • NTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae
    • NTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J. Bacteriol. 173:4977-4982.
    • (1991) J. Bacteriol. , vol.173 , pp. 4977-4982
    • Bysani, N.1    Daugherty, J.R.2    Cooper, T.G.3
  • 12
    • 0020459733 scopus 로고
    • Isolation and characterization of mutations that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae
    • Chisholm, G., and T. G. Cooper. 1982. Isolation and characterization of mutations that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae. Mol. Cell. Biol. 2:1088-1095.
    • (1982) Mol. Cell. Biol. , vol.2 , pp. 1088-1095
    • Chisholm, G.1    Cooper, T.G.2
  • 14
    • 0028801010 scopus 로고
    • Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae
    • Coffman, J. A., R. Rai, and T. G. Cooper. 1995. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177:6910-6918.
    • (1995) J. Bacteriol. , vol.177 , pp. 6910-6918
    • Coffman, J.A.1    Rai, R.2    Cooper, T.G.3
  • 15
    • 0030028431 scopus 로고    scopus 로고
    • Gat1p, a GATA-family protein whose production is sensitive to nitrogen catabolite repression, participates in transcription activation of nitrogen catabolic genes in Saccharomyces cerevisiae
    • Coffman, J. A., R. Rai, T. Cunningham, V. Svetlov, and T. G. Cooper. 1996. Gat1p, a GATA-family protein whose production is sensitive to nitrogen catabolite repression, participates in transcription activation of nitrogen catabolic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:847-858.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 847-858
    • Coffman, J.A.1    Rai, R.2    Cunningham, T.3    Svetlov, V.4    Cooper, T.G.5
  • 16
    • 0030944694 scopus 로고    scopus 로고
    • Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae
    • Coffman, J. A., R. Rai, D. M. Loprete, T. Cunningham, V. Svetlov, and T. G. Cooper. 1997. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179:3416-3429.
    • (1997) J. Bacteriol. , vol.179 , pp. 3416-3429
    • Coffman, J.A.1    Rai, R.2    Loprete, D.M.3    Cunningham, T.4    Svetlov, V.5    Cooper, T.G.6
  • 17
    • 0001840999 scopus 로고
    • Nitrogen metabolism in Saccharomyces cerevisiae
    • J. N. Strathern, E. W. Jones, and J. Broach (ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    • Cooper, T. G. 1982. Nitrogen metabolism in Saccharomyces cerevisiae, p. 39-99. In J. N. Strathern, E. W. Jones, and J. Broach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    • (1982) The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression , pp. 39-99
    • Cooper, T.G.1
  • 18
    • 0002190417 scopus 로고    scopus 로고
    • Allantoin degradative system - An integrated transcriptional response to multiple signals
    • R. Brambl and G. Marzluf (ed.), Springer-Verlag, Berlin, Germany
    • Cooper, T. G. 1996. Allantoin degradative system - an integrated transcriptional response to multiple signals, p. 139-169. In R. Brambl and G. Marzluf (ed.), Mycota. Springer-Verlag, Berlin, Germany.
    • (1996) Mycota , pp. 139-169
    • Cooper, T.G.1
  • 19
    • 0025058543 scopus 로고
    • The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae
    • Cooper, T. G., D. Ferguson, R. Rai, and N. Bysani. 1990. The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J. Bacteriol. 172:1014-1018.
    • (1990) J. Bacteriol. , vol.172 , pp. 1014-1018
    • Cooper, T.G.1    Ferguson, D.2    Rai, R.3    Bysani, N.4
  • 20
    • 0024337290 scopus 로고
    • Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae
    • Cooper, T. G., R. Rai, and H. S. Yoo. 1989. Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5440-5444.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 5440-5444
    • Cooper, T.G.1    Rai, R.2    Yoo, H.S.3
  • 21
    • 0026518932 scopus 로고
    • The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper
    • Coornaert, D., S. Vissers, B. Andre, and M. Grenson. 1992. The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr. Genet. 21:301-307.
    • (1992) Curr. Genet. , vol.21 , pp. 301-307
    • Coornaert, D.1    Vissers, S.2    Andre, B.3    Grenson, M.4
  • 22
    • 0025959235 scopus 로고
    • The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferase
    • Coschigano, P. W., and B. Magasanik. 1991. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferase. Mol. Cell. Biol. 11:822-832.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 822-832
    • Coschigano, P.W.1    Magasanik, B.2
  • 23
    • 0023954446 scopus 로고
    • Regulation of nitrogen assimilation in Saccharomyces cerevisiae: Roles of the URE2 and GLN3 genes
    • Courchesne, W. E., and B. Magasanik. 1988. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170:708-713.
    • (1988) J. Bacteriol. , vol.170 , pp. 708-713
    • Courchesne, W.E.1    Magasanik, B.2
  • 24
    • 0028889205 scopus 로고
    • Studies on transcription activation by the multimeric CCAAT-binding factor CBF
    • Coustry, F., S. N. Maity, and B. de Crombrugghe. 1995. Studies on transcription activation by the multimeric CCAAT-binding factor CBF. J. Biol. Chem. 270:468-475.
    • (1995) J. Biol. Chem. , vol.270 , pp. 468-475
    • Coustry, F.1    Maity, S.N.2    De Crombrugghe, B.3
  • 25
    • 0026086914 scopus 로고
    • Critical structural elements of the VP16 transcriptional activation domain
    • Cress, W. D., and S. J. Triezenberg. 1991. Critical structural elements of the VP16 transcriptional activation domain. Science 251:87-90.
    • (1991) Science , vol.251 , pp. 87-90
    • Cress, W.D.1    Triezenberg, S.J.2
  • 26
    • 0025983819 scopus 로고
    • Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression
    • Cunningham, T. S., and T. G. Cooper. 1991. Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol. Cell. Biol. 11:6205-6215.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 6205-6215
    • Cunningham, T.S.1    Cooper, T.G.2
  • 28
    • 0028169783 scopus 로고
    • NTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae
    • NTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J. Bacteriol. 176:4718-4725.
    • (1994) J. Bacteriol. , vol.176 , pp. 4718-4725
    • Cunningham, T.S.1    Dorrington, R.A.2    Cooper, T.G.3
  • 29
    • 0029665751 scopus 로고    scopus 로고
    • NTR elements and activates transcription of nitrogen catabolite repression-sensitive genes
    • NTR elements and activates transcription of nitrogen catabolite repression-sensitive genes. J. Bacteriol. 178:3470-3479.
    • (1996) J. Bacteriol. , vol.178 , pp. 3470-3479
    • Cunningham, T.S.1    Svetlov, V.2    Rai, R.3    Cooper, T.G.4
  • 31
    • 0027523893 scopus 로고
    • Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae
    • Daugherty, J. R., R. Rai, H. M. ElBerry, and T. G. Cooper. 1993. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 175:64-73.
    • (1993) J. Bacteriol. , vol.175 , pp. 64-73
    • Daugherty, J.R.1    Rai, R.2    ElBerry, H.M.3    Cooper, T.G.4
  • 32
    • 0029982658 scopus 로고    scopus 로고
    • The embryonic transcription factor stage specific activator protein contains a potent bipartite activation domain that interacts with several RNA polymerase II basal transcription factors
    • DeFalco, J., and G. Childs. 1996. The embryonic transcription factor stage specific activator protein contains a potent bipartite activation domain that interacts with several RNA polymerase II basal transcription factors. Proc. Natl. Acad. Sci. USA 93:5802-5807.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 5802-5807
    • DeFalco, J.1    Childs, G.2
  • 33
    • 0029918701 scopus 로고    scopus 로고
    • Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae
    • des Etages, S. A. G., D. A. Falvey, R. J. Reece, and M. C. Brandriss. 1996. Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 142:1069-1082.
    • (1996) Genetics , vol.142 , pp. 1069-1082
    • Des Etages, S.A.G.1    Falvey, D.A.2    Reece, R.J.3    Brandriss, M.C.4
  • 34
    • 0015876290 scopus 로고
    • Yeast mutants pleiotropically impaired in the regulation of two glutamate dehydrogenases
    • Drillien, R., M. Aigle, and F. Lacroute. 1973. Yeast mutants pleiotropically impaired in the regulation of two glutamate dehydrogenases. Biochem. Biophys. Res. Commun. 53:367-372.
    • (1973) Biochem. Biophys. Res. Commun. , vol.53 , pp. 367-372
    • Drillien, R.1    Aigle, M.2    Lacroute, F.3
  • 35
    • 0015260033 scopus 로고
    • Ureidosuccinic acid uptake in yeast and some aspects of its regulation
    • Drillien, R., and F. Lacroute. 1972. Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J. Bacteriol. 109:203-208.
    • (1972) J. Bacteriol. , vol.109 , pp. 203-208
    • Drillien, R.1    Lacroute, F.2
  • 36
    • 0029092610 scopus 로고
    • Correlation of two-hybrid affinity data with in vitro measurements
    • Estojak, J. R., R. Brent, and E. A. Golemis. 1995. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biol. 15:5820-5829.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5820-5829
    • Estojak, J.R.1    Brent, R.2    Golemis, E.A.3
  • 37
    • 0029969989 scopus 로고    scopus 로고
    • The regulatory protein NIT4 that mediates nitrate induction in Neurospora crassa contains a complex tripartite activation domain with a novel leucine-rich acidic motif
    • Feng, B., and G. Marzluf. 1996. The regulatory protein NIT4 that mediates nitrate induction in Neurospora crassa contains a complex tripartite activation domain with a novel leucine-rich acidic motif. Curr. Genet. 29:537-548.
    • (1996) Curr. Genet. , vol.29 , pp. 537-548
    • Feng, B.1    Marzluf, G.2
  • 38
    • 0023500809 scopus 로고
    • Transcription in yeast activated by a putative amphipathic a helix linked to a DNA binding unit
    • Giniger, E., and M. Ptashne. 1987. Transcription in yeast activated by a putative amphipathic a helix linked to a DNA binding unit. Nature 330:670-672.
    • (1987) Nature , vol.330 , pp. 670-672
    • Giniger, E.1    Ptashne, M.2
  • 39
    • 0002337352 scopus 로고
    • Two hybrid systems/interaction traps
    • F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. S. Seidman, J. A. Smith, and K. Struhl (ed.), John Wiley and Sons, New York, N.Y.
    • Golemis, E. A., J. Gyurius, and R. Brent. 1994. Two hybrid systems/interaction traps, p. 13.14.1-13.14.17. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. S. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. John Wiley and Sons, New York, N.Y.
    • (1994) Current Protocols in Molecular Biology , pp. 13141-131417
    • Golemis, E.A.1    Gyurius, J.2    Brent, R.3
  • 40
    • 0020739930 scopus 로고
    • Heme regulatory transcription of the CYC1 gene of S. cerevisiae via an upstream activation site
    • Guarente, L., and T. Mason. 1983. Heme regulatory transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32:1279-1286.
    • (1983) Cell , vol.32 , pp. 1279-1286
    • Guarente, L.1    Mason, T.2
  • 41
    • 0027468172 scopus 로고
    • Structure(?) and function of acidic transcription activators
    • Hahn, S. 1993. Structure(?) and function of acidic transcription activators. Cell 72:481-483.
    • (1993) Cell , vol.72 , pp. 481-483
    • Hahn, S.1
  • 42
    • 0027382805 scopus 로고
    • Transcriptional activation in yeast by the proline-rich activation domain of human CTF1
    • Kim, T. K., and R. G. Roeder. 1993. Transcriptional activation in yeast by the proline-rich activation domain of human CTF1. J. Biol. Chem. 268:20866-20869.
    • (1993) J. Biol. Chem. , vol.268 , pp. 20866-20869
    • Kim, T.K.1    Roeder, R.G.2
  • 43
  • 44
    • 0030014797 scopus 로고    scopus 로고
    • Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: Implications for start site selection and initiation complex formation
    • Leather, K. K., D. A. Bushnell, and R. D. Kornberg. 1996. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell 85:773-779.
    • (1996) Cell , vol.85 , pp. 773-779
    • Leather, K.K.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 45
    • 0023649184 scopus 로고
    • A new class of transcriptional activators
    • Ma, J., and M. Ptashne. 1987. A new class of transcriptional activators. Cell 51:113-119.
    • (1987) Cell , vol.51 , pp. 113-119
    • Ma, J.1    Ptashne, M.2
  • 46
    • 0029740873 scopus 로고    scopus 로고
    • Functional interaction of the c-Myc transactivation domain with the TATA binding protein: Evidence for an induced fit model of transactivation domain folding
    • McEwan, I. J., K. Dahlman-Wright, J. Ford, and A. P. Wright. 1996. Functional interaction of the c-Myc transactivation domain with the TATA binding protein: evidence for an induced fit model of transactivation domain folding. Biochemistry 35:9584-9593.
    • (1996) Biochemistry , vol.35 , pp. 9584-9593
    • McEwan, I.J.1    Dahlman-Wright, K.2    Ford, J.3    Wright, A.P.4
  • 47
    • 0003785155 scopus 로고
    • Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    • Miller, J. H. 1972. Experiments in molecular genetics, p. 403. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    • (1972) Experiments in Molecular Genetics , pp. 403
    • Miller, J.H.1
  • 48
    • 0025999296 scopus 로고
    • Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain
    • Minehart, P. L., and B. Magasanik. 1991. Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 11:6216-6228.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 6216-6228
    • Minehart, P.L.1    Magasanik, B.2
  • 49
    • 0021706678 scopus 로고
    • Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae
    • Mitchell, A. P., and B. Magasanik. 1984. Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2758-2766.
    • (1984) Mol. Cell. Biol. , vol.4 , pp. 2758-2766
    • Mitchell, A.P.1    Magasanik, B.2
  • 50
    • 0024290488 scopus 로고
    • Helix signals in proteins
    • Presta, L. G., and G. D. Rose. 1988. Helix signals in proteins. Science 240:1632-1641.
    • (1988) Science , vol.240 , pp. 1632-1641
    • Presta, L.G.1    Rose, G.D.2
  • 51
    • 0025369859 scopus 로고
    • Activators and targets
    • Ptashne, M., and A. A. F. Gann. 1990. Activators and targets. Nature 346: 329-331.
    • (1990) Nature , vol.346 , pp. 329-331
    • Ptashne, M.1    Gann, A.A.F.2
  • 52
    • 0025969255 scopus 로고
    • Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways
    • Qui, H. F., E. Dubois, and F. Messenguy. 1991. Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways. Mol. Cell. Biol. 11:2169-2179.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 2169-2179
    • Qui, H.F.1    Dubois, E.2    Messenguy, F.3
  • 53
    • 0023387946 scopus 로고
    • Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae
    • Rai, R., F. S. Genbauffe, and T. G. Cooper. 1987. Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J. Bacteriol. 169:3521-3524.
    • (1987) J. Bacteriol. , vol.169 , pp. 3521-3524
    • Rai, R.1    Genbauffe, F.S.2    Cooper, T.G.3
  • 54
    • 0024615533 scopus 로고
    • Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae
    • Rai, R., F. S. Genbauffe, R. A. Sumrada, and T. G. Cooper. 1989. Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:602-608.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 602-608
    • Rai, R.1    Genbauffe, F.S.2    Sumrada, R.A.3    Cooper, T.G.4
  • 55
    • 0024290472 scopus 로고
    • Amino acid preferences for specific locations at the ends of α-helices
    • Richardson, J. S., and D. C. Richardson. 1988. Amino acid preferences for specific locations at the ends of α-helices. Science 240:1648-1652.
    • (1988) Science , vol.240 , pp. 1648-1652
    • Richardson, J.S.1    Richardson, D.C.2
  • 56
    • 0027291015 scopus 로고
    • Prediction of protein structure at better than 70% accuracy
    • Rost, B., and C. Sander. 1993. Prediction of protein structure at better than 70% accuracy. J. Mol. Biol. 232:584-599.
    • (1993) J. Mol. Biol. , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 57
    • 0028300741 scopus 로고
    • Combining evolutionary information and neural networks to predict protein secondary structure
    • Rost, B., and C. Sander. 1994. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55-72.
    • (1994) Proteins , vol.19 , pp. 55-72
    • Rost, B.1    Sander, C.2
  • 58
    • 0030944702 scopus 로고    scopus 로고
    • Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae
    • Rowen, D. W., E. Nwadiuto, and B. Magasanik. 1997. Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179:3761-3766.
    • (1997) J. Bacteriol. , vol.179 , pp. 3761-3766
    • Rowen, D.W.1    Nwadiuto, E.2    Magasanik, B.3
  • 60
    • 0028464383 scopus 로고
    • A minimal transcription activation domain consisting of a specific array of aspartic acid and leucine residues
    • Seipel, K., O. Georgiev, and W. Schaffner. 1994. A minimal transcription activation domain consisting of a specific array of aspartic acid and leucine residues. Biol. Chem. Hoppe-Seyler 375:463-470.
    • (1994) Biol. Chem. Hoppe-Seyler , vol.375 , pp. 463-470
    • Seipel, K.1    Georgiev, O.2    Schaffner, W.3
  • 61
    • 0029865110 scopus 로고    scopus 로고
    • Transcription activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors
    • Shen, F., S. J. Triezenberg, P. Hensley, D. Porter, and J. R. Knutson. 1996. Transcription activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors. J. Biol. Chem. 271:4827-4837.
    • (1996) J. Biol. Chem. , vol.271 , pp. 4827-4837
    • Shen, F.1    Triezenberg, S.J.2    Hensley, P.3    Porter, D.4    Knutson, J.R.5
  • 62
    • 0029965276 scopus 로고    scopus 로고
    • Critical amino acids in the transcriptional activation domain of the herpesvirus protein VP16 are solvent-exposed in highly mobile protein segments
    • Shen, F., S. J. Triezenberg, P. Hensley, D. Porter, and J. R. Knutson. 1996. Critical amino acids in the transcriptional activation domain of the herpesvirus protein VP16 are solvent-exposed in highly mobile protein segments. J. Biol. Chem. 271:4818-4826.
    • (1996) J. Biol. Chem. , vol.271 , pp. 4818-4826
    • Shen, F.1    Triezenberg, S.J.2    Hensley, P.3    Porter, D.4    Knutson, J.R.5
  • 63
    • 0024291679 scopus 로고
    • Acid blobs and negative noodles
    • Sigler, P. B. 1988. Acid blobs and negative noodles. Nature 333:210-212.
    • (1988) Nature , vol.333 , pp. 210-212
    • Sigler, P.B.1
  • 64
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 65
    • 0030450059 scopus 로고    scopus 로고
    • Functional analysis of the genes of yeast chromosome V by genetic footprinting
    • Smith, V., K. N. Chou, D. Lashkari, D. Botstein, and P. O. Brown. 1996. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274:2069-2074.
    • (1996) Science , vol.274 , pp. 2069-2074
    • Smith, V.1    Chou, K.N.2    Lashkari, D.3    Botstein, D.4    Brown, P.O.5
  • 66
    • 0030901169 scopus 로고    scopus 로고
    • Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae
    • Soussi-Boudekou, S. Vissers, A. Urrestarazu, J.-C. Jauniaux, and B. Andre. 1997. Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol. Microbiol. 23:1157-1168.
    • (1997) Mol. Microbiol. , vol.23 , pp. 1157-1168
    • Soussi-Boudekou1    Vissers, S.2    Urrestarazu, A.3    Jauniaux, J.-C.4    Andre, B.5
  • 67
    • 0029883192 scopus 로고    scopus 로고
    • Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae
    • Stanbrough, M., and B. Magasanik. 1996. Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J. Bacteriol. 178:2465-2468.
    • (1996) J. Bacteriol. , vol.178 , pp. 2465-2468
    • Stanbrough, M.1    Magasanik, B.2
  • 68
    • 0028867670 scopus 로고    scopus 로고
    • Review: Compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae
    • Svetlov, V., and T. G. Cooper. 1996. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 11: 1439-1484.
    • (1996) Yeast , vol.11 , pp. 1439-1484
    • Svetlov, V.1    Cooper, T.G.2
  • 69
    • 85036684116 scopus 로고    scopus 로고
    • Efficient PCR-based random mutagenesis of sub-genie (100 bp) DNA fragments
    • in press
    • Svetlov, V., and T. G. Cooper. Efficient PCR-based random mutagenesis of sub-genie (100 bp) DNA fragments. Yeast, in press.
    • Yeast
    • Svetlov, V.1    Cooper, T.G.2
  • 70
    • 0028093616 scopus 로고
    • The Oct-2 glutamine-rich and proline-rich activation domains can synergize with each other or duplicates of themselves to activate transcription
    • Tanaka, M., W. M. Clouston, and W. Herr. 1994. The Oct-2 glutamine-rich and proline-rich activation domains can synergize with each other or duplicates of themselves to activate transcription. Mol. Cell. Biol. 14:6046-6055.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 6046-6055
    • Tanaka, M.1    Clouston, W.M.2    Herr, W.3
  • 71
    • 0027522642 scopus 로고
    • The acidic activation domains of the GCN4 and GAL4 proteins are not α helical but form β sheets
    • Van Hoy, M., K. K. Leuther, T. Kodadek, and S. A. Johnston. 1993. The acidic activation domains of the GCN4 and GAL4 proteins are not α helical but form β sheets. Cell 72:587-594.
    • (1993) Cell , vol.72 , pp. 587-594
    • Van Hoy, M.1    Leuther, K.K.2    Kodadek, T.3    Johnston, S.A.4
  • 72
    • 0024672125 scopus 로고
    • Positive and negative regulatory elements control the expression of the UGA gene coding for the inducible 4-aminobutyric-acid-specific-permease in Saccharomyces cerevisiae
    • Vissers, S., B. Andre, F. Muyldermans, and M. Grenson. 1989. Positive and negative regulatory elements control the expression of the UGA gene coding for the inducible 4-aminobutyric-acid-specific-permease in Saccharomyces cerevisiae. Eur. J. Biochem. 181:357-361.
    • (1989) Eur. J. Biochem. , vol.181 , pp. 357-361
    • Vissers, S.1    Andre, B.2    Muyldermans, F.3    Grenson, M.4
  • 73
    • 0022323786 scopus 로고
    • Nitrogen catabolite repression in yeasts and filamentous fungi
    • Wiame, J.-M., M. Grenson, and H. Arst. 1985. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microb. Physiol. 26:1-87.
    • (1985) Adv. Microb. Physiol. , vol.26 , pp. 1-87
    • Wiame, J.-M.1    Grenson, M.2    Arst, H.3
  • 74
    • 0028308104 scopus 로고
    • [URE3] as an altered Ure2 protein: Evidence for a prion analog in Saccharomyces cerevisiae
    • Wickner, R. B. 1994. [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566-569.
    • (1994) Science , vol.264 , pp. 566-569
    • Wickner, R.B.1
  • 75
    • 0029739903 scopus 로고    scopus 로고
    • Quantitation of putative activator-target affinities predicts transcriptional activating potentials
    • Wu, Y., R. J. Reece, and M. Ptashne. 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15:3951-3963.
    • (1996) EMBO J. , vol.15 , pp. 3951-3963
    • Wu, Y.1    Reece, R.J.2    Ptashne, M.3
  • 76
    • 0028900075 scopus 로고
    • Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae
    • Xu, S., D. A. Falvey, and M. C. Brandriss. 1995. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2321-2330.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2321-2330
    • Xu, S.1    Falvey, D.A.2    Brandriss, M.C.3
  • 77
    • 0029785647 scopus 로고    scopus 로고
    • GNP1, the high affinity glutamine permease of S. cerevisiae
    • Zhu, X., J. Garrett, J. Schreve, and T. Michaeli. 1996. GNP1, the high affinity glutamine permease of S. cerevisiae. Curr. Genet. 30:107-114.
    • (1996) Curr. Genet. , vol.30 , pp. 107-114
    • Zhu, X.1    Garrett, J.2    Schreve, J.3    Michaeli, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.