메뉴 건너뛰기




Volumn 17, Issue , 2014, Pages 177-203

NONEQUILIRIUM MOLECULAR DYNAMICS METHODS FOR LATTICE HEAT CONDUCTION CALCULATIONS

Author keywords

first principles; molecular dynamics; non Fourier; nonequilibrium; phonon transport; size effect; thermal boundary resistance; thermal conductivity

Indexed keywords

HEAT CONDUCTION; HEAT FLUX; HEAT RESISTANCE; THERMAL CONDUCTIVITY; WAVE PROPAGATION;

EID: 85162829490     PISSN: 10490787     EISSN: 23750294     Source Type: Book Series    
DOI: 10.1615/AnnualRevHeatTransfer.2014007407     Document Type: Chapter
Times cited : (54)

References (133)
  • 1
    • 0001195575 scopus 로고
    • On the Determination of Molecular Fields
    • Lennard-Jones, J. E., On the Determination of Molecular Fields, Proc. R. Soc. Lond. A, vol. 106, pp. 463–477, 1924.
    • (1924) Proc. R. Soc. Lond. A , vol.106 , pp. 463-477
    • Lennard-Jones, J. E.1
  • 2
    • 12144268141 scopus 로고
    • Diatomic Molecules According to the Wave Mechanics II. Vibrational Levels
    • Morse, P. M., Diatomic Molecules According to the Wave Mechanics II. Vibrational Levels, Phys. Rev., vol. 34, pp. 57–64, 1929.
    • (1929) Phys. Rev , vol.34 , pp. 57-64
    • Morse, P. M.1
  • 3
    • 0000769378 scopus 로고    scopus 로고
    • Molecular Dynamics Method for Microscale Heat Transfer
    • Maruyama, S., Molecular Dynamics Method for Microscale Heat Transfer, Adv. Numer. Heat Transfer, vol. 2, pp. 189–226, 2000.
    • (2000) Adv. Numer. Heat Transfer , vol.2 , pp. 189-226
    • Maruyama, S.1
  • 4
    • 35348918708 scopus 로고    scopus 로고
    • Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity
    • McGaughey, A. J. H. and Kaviany, M., Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity, Adv. Heat Transfer, vol. 39, pp. 169–255, 2006.
    • (2006) Adv. Heat Transfer , vol.39 , pp. 169-255
    • McGaughey, A. J. H.1    Kaviany, M.2
  • 5
    • 36849003894 scopus 로고    scopus 로고
    • Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles
    • Broido, D. A., Malorny, M., Birner, G., Mingo, N., and Stewart, D. A., Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles, Appl. Phys. Lett., vol. 91, p. 231922, 2007.
    • (2007) Appl. Phys. Lett , vol.91 , pp. 231922
    • Broido, D. A.1    Malorny, M.2    Birner, G.3    Mingo, N.4    Stewart, D. A.5
  • 6
    • 80052186834 scopus 로고    scopus 로고
    • Heat Transport in Silicon from First-Principles Calculations
    • Esfarjani, K., Chen, G., and Stokes, H. T., Heat Transport in Silicon from First-Principles Calculations, Phys. Rev. B, vol. 84, p. 085204, 2011.
    • (2011) Phys. Rev. B , vol.84 , pp. 085204
    • Esfarjani, K.1    Chen, G.2    Stokes, H. T.3
  • 7
    • 80053609184 scopus 로고    scopus 로고
    • Thermal Conductivity of Half-Heusler Compounds from First-Principles Calculations
    • Shiomi, J., Esfarjani, K., and Chen, G., Thermal Conductivity of Half-Heusler Compounds from First-Principles Calculations, Phys. Rev. B, vol. 84, p. 104302, 2011.
    • (2011) Phys. Rev. B , vol.84 , pp. 104302
    • Shiomi, J.1    Esfarjani, K.2    Chen, G.3
  • 9
    • 0002467378 scopus 로고
    • Fast Parallel Algorithms for Short-Range Molecular Dynamics
    • Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995.
    • (1995) J. Comput. Phys , vol.117 , Issue.1 , pp. 1-19
    • Plimpton, S.1
  • 12
    • 33646870309 scopus 로고    scopus 로고
    • DL_POLY_3: New Dimensions in Molecular Dynamics Simulations via Massive Parallelism
    • Todorov, I. T., Smith, W., Trachenko, K., and Dove, M. T., DL_POLY_3: New Dimensions in Molecular Dynamics Simulations via Massive Parallelism, Mater. Chem., vol. 16, pp. 1911–1918, 2006.
    • (2006) Mater. Chem , vol.16 , pp. 1911-1918
    • Todorov, I. T.1    Smith, W.2    Trachenko, K.3    Dove, M. T.4
  • 13
    • 0034251715 scopus 로고    scopus 로고
    • Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity
    • Lukes, J. R., Li, D. Y., Liang, X.-G., and Tien, C.-L., Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity, ASME J. Heat Transfer, vol. 122, pp. 536–543, 2000
    • (2000) ASME J. Heat Transfer , vol.122 , pp. 536-543
    • Lukes, J. R.1    Li, D. Y.2    Liang, X.-G.3    Tien, C.-L.4
  • 14
    • 0036537725 scopus 로고    scopus 로고
    • Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
    • Schelling, P. K., Phillpot, S. R., and Keblinski, P., Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity, Phys. Rev. B, vol. 65, p. 144306, 2002.
    • (2002) Phys. Rev. B , vol.65 , pp. 144306
    • Schelling, P. K.1    Phillpot, S. R.2    Keblinski, P.3
  • 15
    • 7244250119 scopus 로고    scopus 로고
    • Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results with Simple Models
    • Chantrenne, P. and Barrat, J.-L., Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results with Simple Models, ASME J. Heat Transfer, vol. 126, pp. 577–585, 2004.
    • (2004) ASME J. Heat Transfer , vol.126 , pp. 577-585
    • Chantrenne, P.1    Barrat, J.-L.2
  • 16
    • 0000876684 scopus 로고
    • Stationary Nonequilibrium States by Molecular Dynamics Fourier’s Law
    • Tenenbaum, A., Ciccotti, G., and Gallico, R., Stationary Nonequilibrium States by Molecular Dynamics Fourier’s Law, Phys. Rev. A, vol. 25, pp. 2778–2787, 1982.
    • (1982) Phys. Rev. A , vol.25 , pp. 2778-2787
    • Tenenbaum, A.1    Ciccotti, G.2    Gallico, R.3
  • 18
    • 38049151533 scopus 로고
    • Homogeneous NEMD Algorithm for Thermal Conductivity: Application of Non-Canonical Linear Response Theory
    • Evans, D. J., Homogeneous NEMD Algorithm for Thermal Conductivity: Application of Non-Canonical Linear Response Theory, Phys. Lett., vol. 91A, pp. 457–460, 1982.
    • (1982) Phys. Lett , vol.91A , pp. 457-460
    • Evans, D. J.1
  • 19
    • 0004451479 scopus 로고
    • Molecular-dynamical Study of Second Sound in a Solid Excited by a Strong Heat Pulse
    • Tsai, D. H. and MacDonald, R. A., Molecular-dynamical Study of Second Sound in a Solid Excited by a Strong Heat Pulse, Phys. Rev. B, vol. 14, pp. 4714–4723, 1976.
    • (1976) Phys. Rev. B , vol.14 , pp. 4714-4723
    • Tsai, D. H.1    MacDonald, R. A.2
  • 20
    • 0028378591 scopus 로고
    • Molecular Dynamics Study of Heat Conduction in Solid Materials
    • Kotake, S. and Wakuri, S., Molecular Dynamics Study of Heat Conduction in Solid Materials, JSME Int. J. Ser. B, vol. 37, pp. 103–108, 1994.
    • (1994) JSME Int. J. Ser. B , vol.37 , pp. 103-108
    • Kotake, S.1    Wakuri, S.2
  • 21
    • 0001396469 scopus 로고
    • Thermal Conductivity of Crystals: A Molecular Dynamics Study of Heat Flow in a Two-Dimensional Crystal
    • Mountain, R. D. and MacDonald, R. A., Thermal Conductivity of Crystals: A Molecular Dynamics Study of Heat Flow in a Two-Dimensional Crystal, Phys. Rev. B, vol. 28, pp. 3022–3025, 1983.
    • (1983) Phys. Rev. B , vol.28 , pp. 3022-3025
    • Mountain, R. D.1    MacDonald, R. A.2
  • 22
    • 0041751651 scopus 로고    scopus 로고
    • A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single Walled Nanotube
    • Maruyama, S., A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single Walled Nanotube, Microscale Therm. Eng., vol. 7, pp. 41–50, 2003.
    • (2003) Microscale Therm. Eng , vol.7 , pp. 41-50
    • Maruyama, S.1
  • 23
    • 79953176480 scopus 로고    scopus 로고
    • Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons
    • Shiomi, J. and Maruyama, S., Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons, Int. J. Thermophys., vol. 31, pp. 1945–1951, 2007.
    • (2007) Int. J. Thermophys , vol.31 , pp. 1945-1951
    • Shiomi, J.1    Maruyama, S.2
  • 24
    • 84864136904 scopus 로고    scopus 로고
    • Size dependent thermal conductivity of single-walled carbon nanotubes
    • Cao, A. and Qu, J., Size dependent thermal conductivity of single-walled carbon nanotubes, J. Appl. Phys., vol. 112, p. 013503, 2012.
    • (2012) J. Appl. Phys , vol.112 , pp. 013503
    • Cao, A.1    Qu, J.2
  • 25
    • 54249154694 scopus 로고    scopus 로고
    • Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes
    • Shiomi, J. and Maruyama, S., Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes, Jpn. J. Appl. Phys., vol. 47, pp. 2005–2009, 2008.
    • (2008) Jpn. J. Appl. Phys , vol.47 , pp. 2005-2009
    • Shiomi, J.1    Maruyama, S.2
  • 26
    • 21844516442 scopus 로고
    • Criteria for Local Equilibrium in a System with Transport of Heat and Mass
    • Hafsljold, B. and Ratkje, S. K., Criteria for Local Equilibrium in a System with Transport of Heat and Mass, J. Stat. Phys., vol. 78, pp. 463–494, 1995.
    • (1995) J. Stat. Phys , vol.78 , pp. 463-494
    • Hafsljold, B.1    Ratkje, S. K.2
  • 27
    • 34547809547 scopus 로고
    • A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
    • Nose, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Methods, J. Chem. Phys., vol. 81, pp. 511–519, 1984.
    • (1984) J. Chem. Phys , vol.81 , pp. 511-519
    • Nose, S.1
  • 28
    • 0001538909 scopus 로고
    • Canonical dynamics: Equilibrium Phase-Space Distributions
    • Hoover, W. G., Canonical dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, vol. 31, pp. 1695–1697, 1985.
    • (1985) Phys. Rev. A , vol.31 , pp. 1695-1697
    • Hoover, W. G.1
  • 29
    • 36749113534 scopus 로고
    • Generalized Langevin Equation Approach for Atom/Solid-Surface Scattering: General Formulation for Classical Scattering Off Harmonic Solids
    • Adelman, S. A. and Doll, J. D., Generalized Langevin Equation Approach for Atom/Solid-Surface Scattering: General Formulation for Classical Scattering Off Harmonic Solids, J. Chem. Phys., vol. 64, pp. 2375–2388, 1975.
    • (1975) J. Chem. Phys , vol.64 , pp. 2375-2388
    • Adelman, S. A.1    Doll, J. D.2
  • 30
    • 0031559226 scopus 로고    scopus 로고
    • A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
    • Muller-Plathe, F., A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity, J. Chem. Phys., vol. 106, pp. 6082–6085, 1997.
    • (1997) J. Chem. Phys , vol.106 , pp. 6082-6085
    • Muller-Plathe, F.1
  • 31
    • 0344341434 scopus 로고
    • Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and through Liquid-Gas Interface
    • Ikeshoji, T. and Hafsljold, B., Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and through Liquid-Gas Interface, Mol. Phys., vol. 81, pp. 251–261, 1994.
    • (1994) Mol. Phys , vol.81 , pp. 251-261
    • Ikeshoji, T.1    Hafsljold, B.2
  • 32
    • 0034323828 scopus 로고    scopus 로고
    • Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method
    • Bedrov, R. and Smith, G. D., Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method, J. Chem. Phys. Lett., vol. 113, pp. 8080–8084, 2000.
    • (2000) J. Chem. Phys. Lett , vol.113 , pp. 8080-8084
    • Bedrov, R.1    Smith, G. D.2
  • 33
    • 0001664075 scopus 로고    scopus 로고
    • Molecular-Dynamics Calculation of the Thermal Conductivity of Vitreous Silica
    • Jund, P. and Jullien, R., Molecular-Dynamics Calculation of the Thermal Conductivity of Vitreous Silica, Phys. Rev. B, vol. 59, pp. 13707–13711, 1999.
    • (1999) Phys. Rev. B , vol.59 , pp. 13707-13711
    • Jund, P.1    Jullien, R.2
  • 34
    • 34547854199 scopus 로고    scopus 로고
    • System Size and Control Parameter Effects in Reverse Perturbation Nonequilibrium Molecular Dynamics
    • Mountain, R. D., System Size and Control Parameter Effects in Reverse Perturbation Nonequilibrium Molecular Dynamics, J. Chem. Phys., vol. 124, p. 104109, 2006.
    • (2006) J. Chem. Phys , vol.124 , pp. 104109
    • Mountain, R. D.1
  • 36
    • 23144439367 scopus 로고    scopus 로고
    • Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves
    • Mingo, N. and Broido, D. A., Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves,” Nano Lett., vol. 5, pp. 1221–1225, 2005.
    • (2005) Nano Lett , vol.5 , pp. 1221-1225
    • Mingo, N.1    Broido, D. A.2
  • 37
    • 80051596399 scopus 로고    scopus 로고
    • On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures
    • Tian, Z., Esfarjani, K., Shiomi, J., Henry, A. S., and Chen, G., On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures, Appl. Phys. Lett., vol. 99, p. 053122, 2011.
    • (2011) Appl. Phys. Lett , vol.99 , pp. 053122
    • Tian, Z.1    Esfarjani, K.2    Shiomi, J.3    Henry, A. S.4    Chen, G.5
  • 38
    • 70349159872 scopus 로고    scopus 로고
    • Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes
    • Yamamoto, T., Konabe, S., Shiomi, J., and Maruyama, S., Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes, Appl. Phys. Express, vol. 2, p. 095003, 2009.
    • (2009) Appl. Phys. Express , vol.2 , pp. 095003
    • Yamamoto, T.1    Konabe, S.2    Shiomi, J.3    Maruyama, S.4
  • 39
    • 11044224156 scopus 로고    scopus 로고
    • Quantized Thermal Conductance of Dielectric Quantum. Wires
    • Rego, L. G. C. and Kirczenow, G., Quantized Thermal Conductance of Dielectric Quantum. Wires, Phys. Rev. Lett., vol. 81, pp. 232–235, 1998.
    • (1998) Phys. Rev. Lett , vol.81 , pp. 232-235
    • Rego, L. G. C.1    Kirczenow, G.2
  • 40
    • 1642601568 scopus 로고    scopus 로고
    • Universal Features of Quantized Thermal Conductance of Carbon Nanotubes
    • Yamamoto, T., Watanabe, S., and Watanabe, K., Universal Features of Quantized Thermal Conductance of Carbon Nanotubes, Phys. Rev. Lett., vol. 92, p. 075502, 2004.
    • (2004) Phys. Rev. Lett , vol.92 , pp. 075502
    • Yamamoto, T.1    Watanabe, S.2    Watanabe, K.3
  • 41
    • 0001174548 scopus 로고
    • Note on the Conduction of Heat in Crystals
    • Casimir, H. B. G., Note on the Conduction of Heat in Crystals, Physica (Amsterdam), vol. 6, pp. 495–500, 1938.
    • (1938) Physica (Amsterdam) , vol.6 , pp. 495-500
    • Casimir, H. B. G.1
  • 42
    • 0028045774 scopus 로고
    • Theory of the a-Plane Thermal Conductivity of Graphite
    • Klemens, P. G. and Pedraza, D. F., Theory of the a-Plane Thermal Conductivity of Graphite, Carbon, vol. 32, pp. 735–741, 1994.
    • (1994) Carbon , vol.32 , pp. 735-741
    • Klemens, P. G.1    Pedraza, D. F.2
  • 43
    • 37649030942 scopus 로고    scopus 로고
    • Thermal Conductivity of Crystalline Quartz from Classical Simulations
    • Yoon, Y.-G., Car, R., Srolovitz, D. J., and Scandolo, S., Thermal Conductivity of Crystalline Quartz from Classical Simulations, Phys. Rev. B, vol. 70, p. 012302, 2004.
    • (2004) Phys. Rev. B , vol.70 , pp. 012302
    • Yoon, Y.-G.1    Car, R.2    Srolovitz, D. J.3    Scandolo, S.4
  • 44
    • 0035790137 scopus 로고    scopus 로고
    • Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation
    • Schelling, P. K. and Phillpot, S. R., Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation., J. Am.Ceram. Soc., vol. 84, pp. 2997–3007, 2001.
    • (2001) J. Am.Ceram. Soc , vol.84 , pp. 2997-3007
    • Schelling, P. K.1    Phillpot, S. R.2
  • 45
    • 0042063798 scopus 로고    scopus 로고
    • A Molecular Dynamics Study of Thermal Conductivity of Zirconium Hydride
    • Konashi, K., Ikeshoji, T., Kawazoe, Y., and Matsui, H., A Molecular Dynamics Study of Thermal Conductivity of Zirconium Hydride, J. Alloy. Compound, vol. 356, pp. 279–282, 2003.
    • (2003) J. Alloy. Compound , vol.356 , pp. 279-282
    • Konashi, K.1    Ikeshoji, T.2    Kawazoe, Y.3    Matsui, H.4
  • 46
    • 0035280055 scopus 로고    scopus 로고
    • Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
    • Osman, M. A. and Srivastava, D., Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes, Nanotechnology, vol. 12, pp. 21–24, 2001.
    • (2001) Nanotechnology , vol.12 , pp. 21-24
    • Osman, M. A.1    Srivastava, D.2
  • 47
    • 79955401067 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane
    • Luo, T., Esfarjani, K., Shiomi, J., Henry, A., and Chen, G., Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane, J. Appl. Phys., vol. 109, p. 074321, 2011.
    • (2011) J. Appl. Phys , vol.109 , pp. 074321
    • Luo, T.1    Esfarjani, K.2    Shiomi, J.3    Henry, A.4    Chen, G.5
  • 49
    • 0034325768 scopus 로고    scopus 로고
    • Two-Dimensional Molecular Dynamics Simulation of the Thermal Conductance of Superlattices
    • Liang, X.-G. and Shi, B., Two-Dimensional Molecular Dynamics Simulation of the Thermal Conductance of Superlattices, Mater Sci. Eng. A, vol. 292, pp. 198–202, 2000.
    • (2000) Mater Sci. Eng. A , vol.292 , pp. 198-202
    • Liang, X.-G.1    Shi, B.2
  • 50
    • 0348233223 scopus 로고    scopus 로고
    • Lattice Thermal Conductivity in Superlattices: Molecular Dynamics Calculations with a Heat Reservoir Method
    • Imamura, K., Tanaka, Y., Nishiguchi, N., and Tamura, S., Lattice Thermal Conductivity in Superlattices: Molecular Dynamics Calculations with a Heat Reservoir Method, J. Phys.: Condens. Matter, vol. 15, pp. 8679–8690, 2003.
    • (2003) J. Phys.: Condens. Matter , vol.15 , pp. 8679-8690
    • Imamura, K.1    Tanaka, Y.2    Nishiguchi, N.3    Tamura, S.4
  • 51
    • 2942548003 scopus 로고    scopus 로고
    • Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires
    • Chen, Y., Li, D., Yang, J., Wu, Y., Lukes, J. R., and Majumdar, A., Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires, Physica B, vol. 349, pp. 270–280, 2004.
    • (2004) Physica B , vol.349 , pp. 270-280
    • Chen, Y.1    Li, D.2    Yang, J.3    Wu, Y.4    Lukes, J. R.5    Majumdar, A.6
  • 52
    • 0036795750 scopus 로고    scopus 로고
    • Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
    • Abramson, A. R., Tien, C.-L., and Majumdar, A., Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study, ASME J. Heat Transfer, vol. 124, pp. 963–970, 2002.
    • (2002) ASME J. Heat Transfer , vol.124 , pp. 963-970
    • Abramson, A. R.1    Tien, C.-L.2    Majumdar, A.3
  • 53
    • 84869159336 scopus 로고    scopus 로고
    • Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity
    • Hu, M. and Poulikakos, D., Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity, Nano Lett., vol. 12, pp. 5487–5494, 2012.
    • (2012) Nano Lett , vol.12 , pp. 5487-5494
    • Hu, M.1    Poulikakos, D.2
  • 54
    • 33749440456 scopus 로고    scopus 로고
    • Heat Conduction of Single-Walled Carbon Nanotube Isotope Superlattice Structures: A Molecular Dynamics Study
    • Shiomi, J. and Maruyama, S., Heat Conduction of Single-Walled Carbon Nanotube Isotope Superlattice Structures: A Molecular Dynamics Study, Phys. Rev. B, vol. 74, p. 155401, 2006.
    • (2006) Phys. Rev. B , vol.74 , pp. 155401
    • Shiomi, J.1    Maruyama, S.2
  • 56
    • 0008934520 scopus 로고
    • Interplay of Disorder and Anharmonicity in Heat Conduction: Molecular-Dynamics Study
    • Poetzsch, R. H. H. and Bottger, H., Interplay of Disorder and Anharmonicity in Heat Conduction: Molecular-Dynamics Study, Phys. Rev. B, vol. 50, pp. 757–763, 1994.
    • (1994) Phys. Rev. B , vol.50 , pp. 757-763
    • Poetzsch, R. H. H.1    Bottger, H.2
  • 57
    • 9744246848 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of Thermal Conduction in Nanoporous Thin Films
    • Lukes, J. R. and Tien, C.-L., Molecular Dynamics Simulation of Thermal Conduction in Nanoporous Thin Films, Microscale Therm. Eng., vol. 8, pp. 341–359, 2004.
    • (2004) Microscale Therm. Eng , vol.8 , pp. 341-359
    • Lukes, J. R.1    Tien, C.-L.2
  • 58
    • 84869401457 scopus 로고    scopus 로고
    • Lattice Thermal Conductivity of Semiconducting Bulk Materials: Atomistic Simulations
    • He, Y., Savic, I., Donadio, D., and Galli, G., Lattice Thermal Conductivity of Semiconducting Bulk Materials: Atomistic Simulations, Phys. Chem. Chem. Phys., vol. 14, pp. 16209–16222, 2012.
    • (2012) Phys. Chem. Chem. Phys , vol.14 , pp. 16209-16222
    • He, Y.1    Savic, I.2    Donadio, D.3    Galli, G.4
  • 59
    • 0001631948 scopus 로고    scopus 로고
    • Simulation of Thermal Conductivity and Heat Transport in Solids
    • Oligschleger, C. and Schon, J. C., Simulation of Thermal Conductivity and Heat Transport in Solids, Phys. Rev. B, vol. 59, pp. 4125–4133, 1999.
    • (1999) Phys. Rev. B , vol.59 , pp. 4125-4133
    • Oligschleger, C.1    Schon, J. C.2
  • 60
    • 0001148390 scopus 로고
    • Thermal Conductivity of Amorphous Solids above the Plateau: Molecular- Dynamics Study
    • Michalski, J., Thermal Conductivity of Amorphous Solids above the Plateau: Molecular- Dynamics Study, Phys. Rev. B, vol. 45, pp. 7054–7065, 1992.
    • (1992) Phys. Rev. B , vol.45 , pp. 7054-7065
    • Michalski, J.1
  • 61
    • 0038148300 scopus 로고    scopus 로고
    • Thermal Conduction at the Nanoscale in Some Metals by MD
    • Heino, P. and Ristolainen, E., Thermal Conduction at the Nanoscale in Some Metals by MD, Microelectron. J., vol. 34, pp. 773–777, 2003.
    • (2003) Microelectron. J , vol.34 , pp. 773-777
    • Heino, P.1    Ristolainen, E.2
  • 62
    • 61949101430 scopus 로고    scopus 로고
    • Predicting Phonon Properties and Thermal Conductivity from Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations
    • Turney, J. E., Landry, E. S., Mcgaughey, A. J. H., and Amon, C. H., Predicting Phonon Properties and Thermal Conductivity from Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations, Phys. Rev. B, vol. 79, p. 064301, 2009.
    • (2009) Phys. Rev. B , vol.79 , pp. 064301
    • Turney, J. E.1    Landry, E. S.2    Mcgaughey, A. J. H.3    Amon, C. H.4
  • 63
    • 62349107713 scopus 로고    scopus 로고
    • Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices
    • Landry, E. S. and McGaughey, A. J. H., Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices, Phys. Rev. B, vol. 79, p. 075316, 2009.
    • (2009) Phys. Rev. B , vol.79 , pp. 075316
    • Landry, E. S.1    McGaughey, A. J. H.2
  • 64
    • 65549095954 scopus 로고    scopus 로고
    • Thermal Transport in Polyethylene and at Polyethylene-Diamond Interfaces Investigated Using Molecular Dynamics Simulation
    • Ni, B., Watanabe, T., and Phillpot, S. R., Thermal Transport in Polyethylene and at Polyethylene-Diamond Interfaces Investigated Using Molecular Dynamics Simulation, J. Phys.: Condens. Matter, vol. 21, p. 084219, 2009.
    • (2009) J. Phys.: Condens. Matter , vol.21 , pp. 084219
    • Ni, B.1    Watanabe, T.2    Phillpot, S. R.3
  • 65
    • 69049101220 scopus 로고    scopus 로고
    • Size Dependent Thermoelectric Properties of Silicon Nanowires
    • Shi, L., Yao, D., Zhang, G., and Li, B., Size Dependent Thermoelectric Properties of Silicon Nanowires, Appl. Phys. Lett., vol. 95, p. 063102, 2009.
    • (2009) Appl. Phys. Lett , vol.95 , pp. 063102
    • Shi, L.1    Yao, D.2    Zhang, G.3    Li, B.4
  • 66
    • 67649801864 scopus 로고    scopus 로고
    • Thermal Conductivity of Silicon Nanowire by Nonequilibrium Molecular Dynamics Simulations
    • Wang, S.-C., Liang, X.-G., Xu, X.-H., and Ohara, T., Thermal Conductivity of Silicon Nanowire by Nonequilibrium Molecular Dynamics Simulations, J. Appl. Phys., vol. 105, p. 014316, 2009.
    • (2009) J. Appl. Phys , vol.105 , pp. 014316
    • Wang, S.-C.1    Liang, X.-G.2    Xu, X.-H.3    Ohara, T.4
  • 67
    • 42549107867 scopus 로고    scopus 로고
    • Lattice Thermal Conductivity of SiC Nanowires
    • Papanikolaou, N., Lattice Thermal Conductivity of SiC Nanowires, J. Phys.: Condens. Matter, vol. 20, p. 135201, 2008.
    • (2008) J. Phys.: Condens. Matter , vol.20 , pp. 135201
    • Papanikolaou, N.1
  • 68
    • 77954874813 scopus 로고    scopus 로고
    • Intrinsic Phonon Relaxation Times from First-Principles Studies of the Thermal Conductivities
    • Ward, A. and Broido, D. A., Intrinsic Phonon Relaxation Times from First-Principles Studies of the Thermal Conductivities, Phys. Rev. B, vol. 81, p. 085205, 2010.
    • (2010) Phys. Rev. B , vol.81 , pp. 085205
    • Ward, A.1    Broido, D. A.2
  • 69
    • 4243754961 scopus 로고
    • Computer Simulation of Local Order in Condensed Phases of Silicon
    • Stillinger, F. H. and Weber, T. A., Computer Simulation of Local Order in Condensed Phases of Silicon, Phys. Rev. B, vol. 31, pp. 5262–5271, 1985.
    • (1985) Phys. Rev. B , vol.31 , pp. 5262-5271
    • Stillinger, F. H.1    Weber, T. A.2
  • 70
    • 7544236735 scopus 로고
    • Empirical Interatomic Potential for Silicon with Improved Elastic Properties
    • Tersoff, J., Empirical Interatomic Potential for Silicon with Improved Elastic Properties, Phys. Rev. B, vol. 38, pp. 9902–9905, 1988.
    • (1988) Phys. Rev. B , vol.38 , pp. 9902-9905
    • Tersoff, J.1
  • 71
    • 33749158953 scopus 로고    scopus 로고
    • Lattice Thermal Conductivity of Silicon from Empirical Interatomic Potentials
    • Broido, D. A., Ward, A., and Mingo, N., Lattice Thermal Conductivity of Silicon from Empirical Interatomic Potentials, Phys. Rev. B, vol. 72, p. 014308, 2005.
    • (2005) Phys. Rev. B , vol.72 , pp. 014308
    • Broido, D. A.1    Ward, A.2    Mingo, N.3
  • 72
    • 79251513979 scopus 로고    scopus 로고
    • Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study
    • Garg, J., Bonini, N., Kozinsky, B., and Marzari, N., Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study, Phys. Rev. Lett., vol. 106, p. 045901, 2011.
    • (2011) Phys. Rev. Lett , vol.106 , pp. 045901
    • Garg, J.1    Bonini, N.2    Kozinsky, B.3    Marzari, N.4
  • 73
    • 70350655600 scopus 로고    scopus 로고
    • Ab Initio Theory of the Lattice Thermal Conductivity in Diamond
    • Ward, A., Broido, D. A., Stewart, D. A., and Deinzer, G., Ab Initio Theory of the Lattice Thermal Conductivity in Diamond, Phys. Rev. B, vol. 80, p. 125203, 2009.
    • (2009) Phys. Rev. B , vol.80 , pp. 125203
    • Ward, A.1    Broido, D. A.2    Stewart, D. A.3    Deinzer, G.4
  • 75
    • 84861676879 scopus 로고    scopus 로고
    • Phonon Conduction in PbSe, PbTe, and PbTe1-xSex from First-Principles Calculations
    • Tian, Z., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J., and, Chen, G., Phonon Conduction in PbSe, PbTe, and PbTe1-xSex from First-Principles Calculations, Phys. Rev. B, vol. 85, p. 184303, 2012.
    • (2012) Phys. Rev. B , vol.85 , pp. 184303
    • Tian, Z.1    Garg, J.2    Esfarjani, K.3    Shiga, T.4    Shiomi, J.5    Chen, G.6
  • 76
    • 84872977328 scopus 로고    scopus 로고
    • Gallium Arsenide Thermal Conductivity and Optical Phonon Relaxation Times from First-Principles Calculations
    • Luo, T., Garg, J., Shiomi, J., Esfarjani, K., and Chen, G., Gallium Arsenide Thermal Conductivity and Optical Phonon Relaxation Times from First-Principles Calculations, Europhys. Lett, vol. 101, p. 16001, 2013.
    • (2013) Europhys. Lett , vol.101 , pp. 16001
    • Luo, T.1    Garg, J.2    Shiomi, J.3    Esfarjani, K.4    Chen, G.5
  • 77
    • 42649083997 scopus 로고    scopus 로고
    • Method to Extract Anharmonic Force Constants from First Principles Calculations
    • Esfarjani, K. and Stokes, H. T., Method to Extract Anharmonic Force Constants from First Principles Calculations, Phys. Rev. B, vol. 77, p. 144112, 2008.
    • (2008) Phys. Rev. B , vol.77 , pp. 144112
    • Esfarjani, K.1    Stokes, H. T.2
  • 78
    • 84880563602 scopus 로고    scopus 로고
    • Importance of Local Force Fields on Lattice Thermal Conductivity Reduction in PbTe1-xSex alloys
    • Murakami, T., Shiga, T., Hori, T., Esfarjani, K., and Shiomi, J., Importance of Local Force Fields on Lattice Thermal Conductivity Reduction in PbTe1-xSex alloys, Europhys. Lett., vol. 102, p. 46002, 2013.
    • (2013) Europhys. Lett , vol.102 , pp. 46002
    • Murakami, T.1    Shiga, T.2    Hori, T.3    Esfarjani, K.4    Shiomi, J.5
  • 81
    • 33750530584 scopus 로고
    • The thermal Conductivity of PbTe, SnTe, and GeTe in the Solid and Liquid Phases
    • Fedorov, V. I. and Machuev, V. I., The thermal Conductivity of PbTe, SnTe, and GeTe in the Solid and Liquid Phases, Sov. Phys. Solid State USSR, vol. 11, pp. 1116–1120, 1969.
    • (1969) Sov. Phys. Solid State USSR , vol.11 , pp. 1116-1120
    • Fedorov, V. I.1    Machuev, V. I.2
  • 82
    • 0000970164 scopus 로고
    • The Calculation of Thermal Conductivity by Perturbed Molecular Simulation
    • Gillian, M. J. and Dixon, M., The Calculation of Thermal Conductivity by Perturbed Molecular Simulation, J. Phys. C Solid State, vol. 16, p. 869, 1983.
    • (1983) J. Phys. C Solid State , vol.16 , pp. 869
    • Gillian, M. J.1    Dixon, M.2
  • 83
    • 0040471658 scopus 로고
    • Non-Equilibrium Molecular Dynamics Calculation of Thermal Conductivity of Flexible Molecules: Butane
    • Daivis, P. J. and Evans, D. J., Non-Equilibrium Molecular Dynamics Calculation of Thermal Conductivity of Flexible Molecules: Butane, Mol. Phys., vol. 81, pp. 1289–1295, 1994.
    • (1994) Mol. Phys , vol.81 , pp. 1289-1295
    • Daivis, P. J.1    Evans, D. J.2
  • 84
    • 0035838758 scopus 로고    scopus 로고
    • Flux Expressions and NEMD Perturbations for Models of Semiflexible Molecules
    • Perronace, A., Simon, J.-M., Rousseau, B., and Ciccotti, G., Flux Expressions and NEMD Perturbations for Models of Semiflexible Molecules, Mol. Phys., vol. 99, pp. 1139–1149, 2001.
    • (2001) Mol. Phys , vol.99 , pp. 1139-1149
    • Perronace, A.1    Simon, J.-M.2    Rousseau, B.3    Ciccotti, G.4
  • 85
    • 70449113034 scopus 로고    scopus 로고
    • Generalization of the Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating Thermal Conductivity to Multibody Potentials
    • Mandadapu, K. K., Jones, R. E., and Papadopoulos, P., Generalization of the Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating Thermal Conductivity to Multibody Potentials, Phys. Rev. E, vol. 80, p. 047702, 2009.
    • (2009) Phys. Rev. E , vol.80 , pp. 047702
    • Mandadapu, K. K.1    Jones, R. E.2    Papadopoulos, P.3
  • 86
    • 66749142933 scopus 로고    scopus 로고
    • A Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating Thermal Conductivity with a Three-Body Potential
    • Mandadapu, K. K., Jones, R. E., and Papadopoulos, P., A Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating Thermal Conductivity with a Three-Body Potential, J. Chem. Phys., vol. 130, p. 204106, 2009.
    • (2009) J. Chem. Phys , vol.130 , pp. 204106
    • Mandadapu, K. K.1    Jones, R. E.2    Papadopoulos, P.3
  • 87
    • 0012046728 scopus 로고
    • Non-Equilibrium Molecular Dynamics Algorithm for the Calculation of Thermal Diffusion in Simple Fluid Mixtures
    • Evans, D. J. and Cummings, P. T., Non-Equilibrium Molecular Dynamics Algorithm for the Calculation of Thermal Diffusion in Simple Fluid Mixtures, Mol. Phys., vol. 72, pp. 893–898, 1991.
    • (1991) Mol. Phys , vol.72 , pp. 893-898
    • Evans, D. J.1    Cummings, P. T.2
  • 88
    • 77956240250 scopus 로고    scopus 로고
    • A Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating the Heat Transport Coefficient of Mixtures and Alloys
    • Mandadapu, K. K., Jones, R. E., and Papadopoulos, P., A Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating the Heat Transport Coefficient of Mixtures and Alloys, J. Chem. Phys., vol. 133, p. 034122, 2010.
    • (2010) J. Chem. Phys , vol.133 , pp. 034122
    • Mandadapu, K. K.1    Jones, R. E.2    Papadopoulos, P.3
  • 89
    • 0000765076 scopus 로고    scopus 로고
    • Unusually High Thermal Conductivity of Carbon Nanotubes
    • Berber, S., Kwon, Y.-K., and Tomnek, D., Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett., vol. 84, pp. 4613–4616, 2000.
    • (2000) Phys. Rev. Lett , vol.84 , pp. 4613-4616
    • Berber, S.1    Kwon, Y.-K.2    Tomnek, D.3
  • 90
    • 34247163577 scopus 로고    scopus 로고
    • Thermal Conductivity of GaN Nanotubes Simulated by Nonequilibrium Molecular Dynamics
    • Wang, Z., Gao, F., Crocombette, J.-P., Zu, X. T., Yang, L., and Weber, W. J., Thermal Conductivity of GaN Nanotubes Simulated by Nonequilibrium Molecular Dynamics, Phys. Rev. B, vol. 75, p. 153303, 2007.
    • (2007) Phys. Rev. B , vol.75 , pp. 153303
    • Wang, Z.1    Gao, F.2    Crocombette, J.-P.3    Zu, X. T.4    Yang, L.5    Weber, W. J.6
  • 91
    • 34547130087 scopus 로고    scopus 로고
    • Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
    • Lukes, J. R., and Zhong, H., Thermal Conductivity of Individual Single-Wall Carbon Nanotubes, ASME J. Heat Transfer, vol. 129, pp. 705–716, 2007.
    • (2007) ASME J. Heat Transfer , vol.129 , pp. 705-716
    • Lukes, J. R.1    Zhong, H.2
  • 92
    • 34247333439 scopus 로고    scopus 로고
    • Atomistic Simulation of the Size and Orientation Dependences of Thermal Conductivity in GaN Nanowires
    • Wang, Z., Zu, X., Gao, F., Weber, W. J., and Crocombette, J.-P., Atomistic Simulation of the Size and Orientation Dependences of Thermal Conductivity in GaN Nanowires, Appl. Phys. Lett., vol. 90, p. 161923, 2007.
    • (2007) Appl. Phys. Lett , vol.90 , pp. 161923
    • Wang, Z.1    Zu, X.2    Gao, F.3    Weber, W. J.4    Crocombette, J.-P.5
  • 93
    • 4244037593 scopus 로고    scopus 로고
    • Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices
    • Daly, B. C., Maris, H. J., Imamura, K., and Tamura, S., Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices, Phys. Rev. B, vol. 66, p. 024301, 2002.
    • (2002) Phys. Rev. B , vol.66 , pp. 024301
    • Daly, B. C.1    Maris, H. J.2    Imamura, K.3    Tamura, S.4
  • 94
    • 67649425361 scopus 로고    scopus 로고
    • Impact of Impurities on the Thermal Conductivity of Semiconductor Nanostructures: First-Principles Theory
    • Gibbons, T. M. and Estreicher, S. K., Impact of Impurities on the Thermal Conductivity of Semiconductor Nanostructures: First-Principles Theory, Phys. Rev. Lett., vol. 102, p. 255502, 2009.
    • (2009) Phys. Rev. Lett , vol.102 , pp. 255502
    • Gibbons, T. M.1    Estreicher, S. K.2
  • 96
    • 0000366367 scopus 로고
    • A Form of Heat Conduction Equation which Eliminates the Paradox of Instantaneous Propagation
    • Cattaneo, C., A Form of Heat Conduction Equation which Eliminates the Paradox of Instantaneous Propagation, C. R. Hebd. Seances Acad. Sci., vol. 247, pp. 431–433, 1958.
    • (1958) C. R. Hebd. Seances Acad. Sci , vol.247 , pp. 431-433
    • Cattaneo, C.1
  • 97
    • 0000366366 scopus 로고
    • Les Paradoxes de la Theorie Continue de l’equation De La Chaleur
    • Vernotte, P., Les Paradoxes de la Theorie Continue de l’equation De La Chaleur, C. R. Hebd. Seances Acad. Sci., vol. 246, pp. 3154–3155, 1958.
    • (1958) C. R. Hebd. Seances Acad. Sci , vol.246 , pp. 3154-3155
    • Vernotte, P.1
  • 98
    • 0004451479 scopus 로고
    • Molecular-Dynamical Study of Second Sound in a Solid Excited by a Strong Heat Pulse
    • Tsai, D. H. and MacDonald, R. A., Molecular-Dynamical Study of Second Sound in a Solid Excited by a Strong Heat Pulse, Phys. Rev. B, vol. 14, pp. 4714–4723, 1976.
    • (1976) Phys. Rev. B , vol.14 , pp. 4714-4723
    • Tsai, D. H.1    MacDonald, R. A.2
  • 100
    • 33646764517 scopus 로고    scopus 로고
    • Non-Fourier Heat Conduction in a Single-Walled Carbon Nanotube: Classical Molecular Dynamics Simulations
    • Shiomi, J. and Maruyama, S., Non-Fourier Heat Conduction in a Single-Walled Carbon Nanotube: Classical Molecular Dynamics Simulations, Phys. Rev. B, vol. 73, no. 20, p. 205420, 2006.
    • (2006) Phys. Rev. B , vol.73 , Issue.20 , pp. 205420
    • Shiomi, J.1    Maruyama, S.2
  • 101
    • 29744454515 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of Heat Pulse Propagation in Single-Wall Carbon Nanotubes
    • Osman, M. A. and Srivastava, D., Molecular Dynamics Simulation of Heat Pulse Propagation in Single-Wall Carbon Nanotubes, Phys. Rev. B, vol. 72, p. 125413, 2005.
    • (2005) Phys. Rev. B , vol.72 , pp. 125413
    • Osman, M. A.1    Srivastava, D.2
  • 102
    • 80053471418 scopus 로고    scopus 로고
    • Non-Fourier Heat Conductions in Nanomaterials
    • Wang, M., Yang, N., and Guo, Z.-Y., Non-Fourier Heat Conductions in Nanomaterials, J. Appl. Phys., vol. 110, p. 064310, 2011.
    • (2011) J. Appl. Phys , vol.110 , pp. 064310
    • Wang, M.1    Yang, N.2    Guo, Z.-Y.3
  • 103
    • 84863826911 scopus 로고    scopus 로고
    • A Low-Frequency Wave Motion Mechanism Enables Efficient Energy Transport in Carbon Nanotubes at High Heat Fluxes
    • Zhang, X., Hu, M., and Poulikakos, D., A Low-Frequency Wave Motion Mechanism Enables Efficient Energy Transport in Carbon Nanotubes at High Heat Fluxes, Nano Lett., vol. 12, pp. 3410–3416, 2012.
    • (2012) Nano Lett , vol.12 , pp. 3410-3416
    • Zhang, X.1    Hu, M.2    Poulikakos, D.3
  • 104
    • 0029169286 scopus 로고
    • A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
    • Tzou, D. Y., A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales, ASME J. Heat Transfer, vol. 117, pp. 8–16, 1995.
    • (1995) ASME J. Heat Transfer , vol.117 , pp. 8-16
    • Tzou, D. Y.1
  • 105
    • 0345040704 scopus 로고    scopus 로고
    • Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses
    • Tang, D. W. and Araki, N., Wavy, Wavelike, Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses, Int. J. Heat Mass Transfer, vol. 42, pp. 855–860, 1999.
    • (1999) Int. J. Heat Mass Transfer , vol.42 , pp. 855-860
    • Tang, D. W.1    Araki, N.2    Wavy, Wavelike3
  • 106
    • 0011683409 scopus 로고
    • The Study of Heat Transfer on Helium II
    • Kapitza, P. L., The Study of Heat Transfer on Helium II, J. Phys. USSR, vol. 4, pp. 181–210, 1941.
    • (1941) J. Phys. USSR , vol.4 , pp. 181-210
    • Kapitza, P. L.1
  • 107
    • 51149220754 scopus 로고
    • Thermal Boundary Resistance
    • Swartz, E. T. and Pohl, R. O., Thermal Boundary Resistance, Rev. Mod. Phys., vol. 61, no. 3, pp. 605–668, 1989.
    • (1989) Rev. Mod. Phys , vol.61 , Issue.3 , pp. 605-668
    • Swartz, E. T.1    Pohl, R. O.2
  • 108
    • 0001476117 scopus 로고
    • Lattice-Dynamical Calculation of the Kapitza Resistance Between fcc Lattices
    • Young, D. A. and Maris, H. J., Lattice-Dynamical Calculation of the Kapitza Resistance Between fcc Lattices, Phys. Rev. B, vol. 40, pp. 3685–3693, 1989.
    • (1989) Phys. Rev. B , vol.40 , pp. 3685-3693
    • Young, D. A.1    Maris, H. J.2
  • 109
    • 19944431314 scopus 로고    scopus 로고
    • Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si–Ge Interfaces
    • Zhao, H. and Freund, J. B., Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si–Ge Interfaces, J. Appl. Phys., vol. 97, p. 024903, 2005.
    • (2005) J. Appl. Phys , vol.97 , pp. 024903
    • Zhao, H.1    Freund, J. B.2
  • 110
    • 84922584303 scopus 로고    scopus 로고
    • Characteristics of Phonon Transmission across Epitaxial Interfaces: A Lattice Dynamic Study
    • Wang, J. and Wang, J., Characteristics of Phonon Transmission across Epitaxial Interfaces: A Lattice Dynamic Study, J. Phys.: Condens. Matter, vol. 19, p. 236211, 2007.
    • (2007) J. Phys.: Condens. Matter , vol.19 , pp. 236211
    • Wang, J.1    Wang, J.2
  • 111
    • 34547112858 scopus 로고    scopus 로고
    • Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method
    • Zhang, W., Fisher, T. S., and Mingo, N., Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method, ASME J. Heat Transfer, vol. 129, pp. 483–491, 2007.
    • (2007) ASME J. Heat Transfer , vol.129 , pp. 483-491
    • Zhang, W.1    Fisher, T. S.2    Mingo, N.3
  • 112
    • 84982853825 scopus 로고    scopus 로고
    • Equilibrium Molecular Dynamics Simulations on Interfacial Phonon Transport
    • Chalopin, Y., Rajabpour, A., Han, H., Ni, Y., and Volz, S., Equilibrium Molecular Dynamics Simulations on Interfacial Phonon Transport, Ann. Rev. Heat Transfer, vol. 17, pp. 147–176, 2013.
    • (2013) Ann. Rev. Heat Transfer , vol.17 , pp. 147-176
    • Chalopin, Y.1    Rajabpour, A.2    Han, H.3    Ni, Y.4    Volz, S.5
  • 113
    • 0031143796 scopus 로고    scopus 로고
    • Dynamical Simulations of Nonequilibrium Processes Heat Flow and the Kapitza Resistance across Grain Boundaries
    • Maiti, A., Mahan, G. D., and Pantelides, S. T., Dynamical Simulations of Nonequilibrium Processes Heat Flow and the Kapitza Resistance across Grain Boundaries, Solid State Com-mun., vol. 102, pp. 517–521, 1997.
    • (1997) Solid State Com-mun , vol.102 , pp. 517-521
    • Maiti, A.1    Mahan, G. D.2    Pantelides, S. T.3
  • 114
    • 34248393399 scopus 로고    scopus 로고
    • Molecular-Dynamics Study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels
    • Stevens, R. J., Zhigilei, L. V., and Norris, P. M., Molecular-Dynamics Study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels, Int. J. Heat Mass Transfer, vol. 50, pp. 3977–3989, 2007.
    • (2007) Int. J. Heat Mass Transfer , vol.50 , pp. 3977-3989
    • Stevens, R. J.1    Zhigilei, L. V.2    Norris, P. M.3
  • 115
    • 34247347792 scopus 로고    scopus 로고
    • Scattering of Phonons from a High-Energy Grain Boundary in Silicon: Dependence on Angle of Incidence
    • Kimmer, C., Aubry, S., Skye, A., and Schelling, P. K., Scattering of Phonons from a High-Energy Grain Boundary in Silicon: Dependence on Angle of Incidence, Phys. Rev. B, vol. 75, p. 144105, 2007.
    • (2007) Phys. Rev. B , vol.75 , pp. 144105
    • Kimmer, C.1    Aubry, S.2    Skye, A.3    Schelling, P. K.4
  • 116
    • 50449095086 scopus 로고    scopus 로고
    • Comparison of Theoretical and Simulation-Based Predictions of Grain-Boundary Kapitza Conductance in Silicon
    • Aubry, S., Kimmer, C. J., Skye, A., and Schelling, P. K., Comparison of Theoretical and Simulation-Based Predictions of Grain-Boundary Kapitza Conductance in Silicon, Phys. Rev. B, vol. 78, p. 064112, 2008.
    • (2008) Phys. Rev. B , vol.78 , pp. 064112
    • Aubry, S.1    Kimmer, C. J.2    Skye, A.3    Schelling, P. K.4
  • 117
    • 0037488306 scopus 로고    scopus 로고
    • Molecular-Dynamics Study of Energy Flow and the Kapitza Conductance across an Interface with Imperfection Formed by Two Dielectric Thin Films
    • Twu, C. J. and Ho, J. R., Molecular-Dynamics Study of Energy Flow and the Kapitza Conductance across an Interface with Imperfection Formed by Two Dielectric Thin Films, Phys. Rev. B, vol. 67, p. 205422, 2003.
    • (2003) Phys. Rev. B , vol.67 , pp. 205422
    • Twu, C. J.1    Ho, J. R.2
  • 118
    • 72849116760 scopus 로고    scopus 로고
    • Thermal Boundary Resistance Predictions from Molecular Dynamics Simulations and Theoretical Calculations
    • Landry, E. S. and McGaughey, A. J. H., Thermal Boundary Resistance Predictions from Molecular Dynamics Simulations and Theoretical Calculations, Phys. Rev. B, vol. 80, p. 165304, 2009.
    • (2009) Phys. Rev. B , vol.80 , pp. 165304
    • Landry, E. S.1    McGaughey, A. J. H.2
  • 119
    • 7044249359 scopus 로고    scopus 로고
    • Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites
    • Shenogin, S., Bodapati, A., Xue, R.O. L., and Keblinski, P., Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites, Appl. Phys. Lett., vol. 85, pp. 2229–2231, 2004.
    • (2004) Appl. Phys. Lett , vol.85 , pp. 2229-2231
    • Shenogin, S.1    Bodapati, A.2    Xue, R.O. L.3    Keblinski, P.4
  • 120
    • 3142611693 scopus 로고    scopus 로고
    • Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
    • Shenogin, S., Xue, L., Ozisik, R., Keblinski, P., and Cahill, D. G., Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites, J. Appl. Phys., vol. 95, pp. 8136–8144, 2004.
    • (2004) J. Appl. Phys , vol.95 , pp. 8136-8144
    • Shenogin, S.1    Xue, L.2    Ozisik, R.3    Keblinski, P.4    Cahill, D. G.5
  • 122
    • 33748178464 scopus 로고    scopus 로고
    • Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling
    • Zhong, H. and Lukes, J., Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling, Phys. Rev. B, vol. 74, p. 125403, 2006.
    • (2006) Phys. Rev. B , vol.74 , pp. 125403
    • Zhong, H.1    Lukes, J.2
  • 123
    • 80052800597 scopus 로고    scopus 로고
    • Thermal Transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations
    • Bagri, A., Kim, S.-P., Ruoff, R. S., and Shenoy, V. B., Thermal Transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations, Nano Lett., vol. 11, pp. 3917–3921, 2011.
    • (2011) Nano Lett , vol.11 , pp. 3917-3921
    • Bagri, A.1    Kim, S.-P.2    Ruoff, R. S.3    Shenoy, V. B.4
  • 124
    • 65249114714 scopus 로고    scopus 로고
    • Kapitza Conductance of Silicon–Amorphous Polyethylene Interfaces by Molecular Dynamics Simulations
    • Hu, M., Keblinski, P., and Schelling, P. K., Kapitza Conductance of Silicon–Amorphous Polyethylene Interfaces by Molecular Dynamics Simulations, Phys. Rev. B, vol. 79, p. 104305, 2009.
    • (2009) Phys. Rev. B , vol.79 , pp. 104305
    • Hu, M.1    Keblinski, P.2    Schelling, P. K.3
  • 125
    • 72049097946 scopus 로고    scopus 로고
    • Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au–SAM–Au Junctions
    • Luo, T. and Lloyd, J. R., Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au–SAM–Au Junctions, Int. J. Heat Mass Trans., vol. 53, pp. 1–11, 2010.
    • (2010) Int. J. Heat Mass Trans , vol.53 , pp. 1-11
    • Luo, T.1    Lloyd, J. R.2
  • 126
    • 18844393195 scopus 로고    scopus 로고
    • Thermal Resistance of Crystal Interface: Molecular Dynamics Simulation
    • Matsumoto, M., Wakabayashi, H., and Makino, T., Thermal Resistance of Crystal Interface: Molecular Dynamics Simulation, Heat Transfer—Asian Res., vol. 34, pp. 135–146, 2005.
    • (2005) Heat Transfer—Asian Res , vol.34 , pp. 135-146
    • Matsumoto, M.1    Wakabayashi, H.2    Makino, T.3
  • 127
  • 128
    • 84884865632 scopus 로고    scopus 로고
    • Thermal Resistance and Phonon Scattering at Interface between Carbon Nanotube and Polyethylene
    • Hida, S., Shiga, T., Hori, T., Elliott, J., and Shiomi, J., Thermal Resistance and Phonon Scattering at Interface between Carbon Nanotube and Polyethylene, Int. J. Heat Mass Transfer, vol. 67, pp. 1024–1029, 2013.
    • (2013) Int. J. Heat Mass Transfer , vol.67 , pp. 1024-1029
    • Hida, S.1    Shiga, T.2    Hori, T.3    Elliott, J.4    Shiomi, J.5
  • 129
    • 56349130781 scopus 로고    scopus 로고
    • Thermal Boundary Resistance between Single-Walled Carbon Nanotubes and Surrounding Matrices
    • Carlborg, C. F., Shiomi, J., and Maruyama, S., Thermal Boundary Resistance between Single-Walled Carbon Nanotubes and Surrounding Matrices, Phys. Rev. B, vol. 78, p. 205406, 2008.
    • (2008) Phys. Rev. B , vol.78 , pp. 205406
    • Carlborg, C. F.1    Shiomi, J.2    Maruyama, S.3
  • 130
    • 65549114204 scopus 로고    scopus 로고
    • The Thermal Conductivity and Thermal Rectification of Carbon Nanotubes Studied Using Reverse Non-Equilibrium Molecular Dynamics Simulations
    • Alaghemandi, M., Algaer, E., Bohm, M. C., and Muller-Plathe, F., The Thermal Conductivity and Thermal Rectification of Carbon Nanotubes Studied Using Reverse Non-Equilibrium Molecular Dynamics Simulations, Nanotechnology, vol. 20, p. 115704, 2009.
    • (2009) Nanotechnology , vol.20 , pp. 115704
    • Alaghemandi, M.1    Algaer, E.2    Bohm, M. C.3    Muller-Plathe, F.4
  • 131
    • 67650373496 scopus 로고    scopus 로고
    • Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study
    • Hu, J., Ruan, X., and Chen, Y. P., Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study, Nano Lett., vol. 9, pp. 2730–2735, 2009.
    • (2009) Nano Lett , vol.9 , pp. 2730-2735
    • Hu, J.1    Ruan, X.2    Chen, Y. P.3
  • 132
    • 34548042315 scopus 로고    scopus 로고
    • Thermal Rectification in Carbon Nanotube Intramolecular Junctions: Molecular Dynamics Calculations
    • Wu, G. and Li, B., Thermal Rectification in Carbon Nanotube Intramolecular Junctions: Molecular Dynamics Calculations, Phys. Rev. B, vol. 76, p. 085424, 2007.
    • (2007) Phys. Rev. B , vol.76 , pp. 085424
    • Wu, G.1    Li, B.2
  • 133
    • 57849132235 scopus 로고    scopus 로고
    • Carbon Nanocone: A Promising Thermal Rectifier
    • Yang, N., Zhang, G., and Li, B., Carbon Nanocone: A Promising Thermal Rectifier, Appl. Phys. Lett., vol. 93, p. 243111, 2008.
    • (2008) Appl. Phys. Lett , vol.93 , pp. 243111
    • Yang, N.1    Zhang, G.2    Li, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.