메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Variational learning for recurrent spiking networks

Author keywords

[No Author keywords available]

Indexed keywords

FEEDBACK CONNECTION; FEEDFORWARD CONNECTIONS; GENERATIVE MODEL; LATERAL CONNECTIONS; LEARNING MECHANISM; LEARNING RULES; RECURRENT NETWORKS; SPIKE SEQUENCES; SPIKING NETWORKS; SPIKING NEURONES;

EID: 85162503676     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (40)

References (26)
  • 1
    • 1642553405 scopus 로고    scopus 로고
    • Bayesian integration in sensorimotor learning
    • January
    • Konrad P Körding and Daniel M Wolpert. Bayesian integration in sensorimotor learning. Nature, 427(6971):244-7, January 2004.
    • (2004) Nature , vol.427 , Issue.6971 , pp. 244-247
    • Körding, K.P.1    Wolpert, D.M.2
  • 2
    • 78650972934 scopus 로고    scopus 로고
    • Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
    • January
    • P. Berkes, G. Orban, M. Lengyel, and J. Fiser. Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Science, 331(6013):83-87, January 2011.
    • (2011) Science , vol.331 , Issue.6013 , pp. 83-87
    • Berkes, P.1    Orban, G.2    Lengyel, M.3    Fiser, J.4
  • 3
    • 52049084777 scopus 로고    scopus 로고
    • Spiking networks for Bayesian inference and choice
    • April
    • Wei Ji Ma, Jeffrey M Beck, and Alexandre Pouget. Spiking networks for Bayesian inference and choice. Current opinion in neurobiology, 18(2):217-22, April 2008.
    • (2008) Current Opinion in Neurobiology , vol.18 , Issue.2 , pp. 217-222
    • Ma, W.J.1    Beck, J.M.2    Pouget, A.3
  • 4
    • 33746260413 scopus 로고    scopus 로고
    • Theory-based Bayesian models of inductive learning and reasoning
    • Joshua B Tenenbaum, Thomas L Griffiths, and Charles Kemp. Theory-based Bayesian models of inductive learning and reasoning. Trends in cognitive sciences, 10(7):309-18, 2006.
    • (2006) Trends in Cognitive Sciences , vol.10 , Issue.7 , pp. 309-318
    • Tenenbaum, J.B.1    Griffiths, T.L.2    Kemp, C.3
  • 5
    • 33746260457 scopus 로고    scopus 로고
    • Bayesian decision theory in sensorimotor control
    • July
    • Konrad P Körding and Daniel M Wolpert. Bayesian decision theory in sensorimotor control. Trends in cognitive sciences, 10(7):319-26, July 2006.
    • (2006) Trends in Cognitive Sciences , vol.10 , Issue.7 , pp. 319-326
    • Körding, K.P.1    Wolpert, D.M.2
  • 6
    • 77951576301 scopus 로고    scopus 로고
    • Bayesian modeling of human sequential decision-making on the multi-armed bandit problem
    • Washington, DC: Cognitive Science Society
    • D. Acuna and P. Schrater. Bayesian modeling of human sequential decision-making on the multi-armed bandit problem. In Proceedings of the 30th Annual Conference of the Cognitive Science Society. Washington, DC: Cognitive Science Society, 2008.
    • (2008) Proceedings of the 30th Annual Conference of the Cognitive Science Society
    • Acuna, D.1    Schrater, P.2
  • 7
    • 33745910265 scopus 로고    scopus 로고
    • A hierarchical bayesian model of human decision-making on an optimal stopping problem
    • May
    • Michael D. Lee. A Hierarchical Bayesian Model of Human Decision-Making on an Optimal Stopping Problem. Cognitive Science, 30(3):1-26, May 2006.
    • (2006) Cognitive Science , vol.30 , Issue.3 , pp. 1-26
    • Lee, M.D.1
  • 8
    • 0034928712 scopus 로고    scopus 로고
    • Synaptic modification by correlated activity: Hebb's postulate revisited
    • G. Bi and M. Poo. Synaptic modification by correlated activity: Hebb's postulate revisited. Annual review of neuroscience, 24(1):139-166, 2001.
    • (2001) Annual Review of Neuroscience , vol.24 , Issue.1 , pp. 139-166
    • Bi, G.1    Poo, M.2
  • 9
    • 0040744515 scopus 로고    scopus 로고
    • Mathematical formulations of hebbian learning
    • article
    • W. Gerstner andW. K. Kistler. Mathematical Formulations of Hebbian Learning. Biological Cybernetics, 87(5-6):404-415, 2002. article.
    • (2002) Biological Cybernetics , vol.87 , Issue.5-6 , pp. 404-415
    • Gerstner, W.1    Kistler, W.K.2
  • 10
    • 84856380842 scopus 로고    scopus 로고
    • Spike-response model
    • W. Gerstner. Spike-response model. Scholarpedia, 3(12):1343, 2008.
    • (2008) Scholarpedia , vol.3 , Issue.12 , pp. 1343
    • Gerstner, W.1
  • 12
    • 33745833056 scopus 로고    scopus 로고
    • Predicting spike timing of neocortical pyramidal neurons by simple threshold models
    • August
    • Renaud Jolivet, Alexander Rauch, Hans R. Lüscher, and Wulfram Gerstner. Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci, 21(1):35-49, August 2006.
    • (2006) J Comput Neurosci , vol.21 , Issue.1 , pp. 35-49
    • Jolivet, R.1    Rauch, A.2    Lüscher, H.R.3    Gerstner, W.4
  • 13
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
    • J.P. Pfister, Taro Toyoizumi, D. Barber, and W. Gerstner. Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Computation, 18(6):1318-1348, 2006.
    • (2006) Neural Computation , vol.18 , Issue.6 , pp. 1318-1348
    • Pfister, J.P.1    Toyoizumi, T.2    Barber, D.3    Gerstner, W.4
  • 15
    • 70349239144 scopus 로고    scopus 로고
    • Mean-field approximations for coupled populations of generalized linear model spiking neurons with Markov refractoriness
    • May
    • Taro Toyoizumi, Kamiar Rahnama Rad, and Liam Paninski. Mean-field approximations for coupled populations of generalized linear model spiking neurons with Markov refractoriness. Neural computation, 21(5):1203-43, May 2009.
    • (2009) Neural Computation , vol.21 , Issue.5 , pp. 1203-1243
    • Toyoizumi, T.1    Rad, K.R.2    Paninski, L.3
  • 16
    • 0032603958 scopus 로고    scopus 로고
    • Variational learning in nonlinear gaussian belief networks
    • January
    • Brendan J. Frey and Geoffrey E. Hinton. Variational Learning in Nonlinear Gaussian Belief Networks. Neural Computation, 11(1):193-213, January 1999.
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 193-213
    • Frey, B.J.1    Hinton, G.E.2
  • 17
    • 33751115761 scopus 로고    scopus 로고
    • Variational free energy and the Laplace approximation
    • January
    • Karl Friston, Jérémie Mattout, Nelson Trujillo-Barreto, John Ashburner, and Will Penny. Variational free energy and the Laplace approximation. NeuroImage, 34(1):220-34, January 2007.
    • (2007) NeuroImage , vol.34 , Issue.1 , pp. 220-234
    • Friston, K.1    Mattout, J.2    Trujillo-Barreto, N.3    Ashburner, J.4    Penny, W.5
  • 18
    • 33750511893 scopus 로고    scopus 로고
    • Variational bayesian learning of directed graphical models with hidden variables
    • Matthew J Beal and Zoubin Ghahramani. Variational Bayesian Learning of Directed Graphical Models with Hidden Variables. Bayesian Analysis, 1(4):793-832, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.4 , pp. 793-832
    • Beal, M.J.1    Ghahramani, Z.2
  • 19
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T.S. Jaakkola and M.I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25-37, 2000.
    • (2000) Statistics and Computing , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 20
    • 35448977149 scopus 로고    scopus 로고
    • Common-input models for multiple neural spike-train data
    • December
    • Jayant E Kulkarni and Liam Paninski. Common-input models for multiple neural spike-train data. Network (Bristol, England), 18(4):375-407, December 2007.
    • (2007) Network (Bristol, England) , vol.18 , Issue.4 , pp. 375-407
    • Kulkarni, J.E.1    Paninski, L.2
  • 25
    • 0347527070 scopus 로고    scopus 로고
    • Bayesian computation in recurrent neural circuits
    • January
    • Rajesh P N Rao. Bayesian computation in recurrent neural circuits. Neural computation, 16(1):1-38, January 2004.
    • (2004) Neural Computation , vol.16 , Issue.1 , pp. 1-38
    • Rao, R.P.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.