메뉴 건너뛰기




Volumn 11, Issue 1, 1999, Pages 193-213

Variational learning in nonlinear gaussian belief networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; DEPTH PERCEPTION; HANDWRITING; LEARNING; NONLINEAR SYSTEM; PATTERN RECOGNITION; PHYSIOLOGY; STATISTICS;

EID: 0032603958     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976699300016872     Document Type: Article
Times cited : (83)

References (27)
  • 2
    • 0000717513 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Amari, S.-I., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Amari, S.-I.1    Cichocki, A.2    Yang, H.3
  • 3
    • 0026586030 scopus 로고
    • A self-organizing neural network that discovers surfaces in random-dot stereograms
    • Becker, S., & Hinton, G. E. (1992). A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355, 161-163.
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 4
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • Bell, A. J., & Sejnowski, T. J. (1995). An information maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 7
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • Dayan, P., & Zemel, R. S. (1995). Competition and multiple cause models. Neural Computation, 7, 565-579.
    • (1995) Neural Computation , vol.7 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 9
    • 84898944413 scopus 로고    scopus 로고
    • Continuous sigmoidal belief networks trained using slice sampling
    • M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Frey, B. J. (1997a). Continuous sigmoidal belief networks trained using slice sampling. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press. Available online at: http://www.cs.utoronto.ca/~frey.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Frey, B.J.1
  • 12
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 17
  • 18
    • 0011876592 scopus 로고    scopus 로고
    • Fast learning by bounding like-lihoods in sigmoid type belief networks
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Jaakkola, T., Saul, L. K., & Jordan, M. I. (1996). Fast learning by bounding like-lihoods in sigmoid type belief networks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Jaakkola, T.1    Saul, L.K.2    Jordan, M.I.3
  • 19
    • 84898976425 scopus 로고    scopus 로고
    • Learning nonlinear overcomplete representations for efficient coding
    • M. I. Jordan, M. I. Kearns, & S. A. Solla (Eds.), Cambridge, MA: MIT Press
    • Lewicki, M. S., & Sejnowski, T. J. (1998). Learning nonlinear overcomplete representations for efficient coding. In M. I. Jordan, M. I. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 21
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 23
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive-field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 26
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin, D., & Thayer, D. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 69-76.
    • (1982) Psychometrika , vol.47 , pp. 69-76
    • Rubin, D.1    Thayer, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.