메뉴 건너뛰기




Volumn , Issue , 2016, Pages 363-383

ADJUSTMENT WHEN COVARIATES ARE FALLIBLE

Author keywords

biasing effect; causal effect estimation; fallible covariate; latent covariates; theoretical framework

Indexed keywords


EID: 85142575077     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118947074.ch15     Document Type: Chapter
Times cited : (5)

References (54)
  • 5
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L.M., Schafer, J.L., and Kam, C.M. (2001) A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6 (4), 330–351.
    • (2001) Psychological Methods , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 6
    • 77951656304 scopus 로고    scopus 로고
    • How bias reduction is affected by covariate choice, unreliability, and mode of data analysis: Results from two types of within-study comparisons
    • Cook, T.D., Steiner, P.M., and Pohl, S. (2009) How bias reduction is affected by covariate choice, unreliability, and mode of data analysis: Results from two types of within-study comparisons. Multivariate Behavioral Research, 44 (6), 828–847.
    • (2009) Multivariate Behavioral Research , vol.44 , Issue.6 , pp. 828-847
    • Cook, T.D.1    Steiner, P.M.2    Pohl, S.3
  • 9
    • 79958721165 scopus 로고    scopus 로고
    • Covariate selection in propensity scores using outcome proxies
    • Kelcey, B. (2011) Covariate selection in propensity scores using outcome proxies. Multivariate Behavioral Research, 46 (3), 453–476.
    • (2011) Multivariate Behavioral Research , vol.46 , Issue.3 , pp. 453-476
    • Kelcey, B.1
  • 11
    • 84901417507 scopus 로고    scopus 로고
    • Measurement bias and effect restoration in causal inference
    • Kuroki, M. and Pearl, J. (2014) Measurement bias and effect restoration in causal inference. Biometrika, 101 (2), 423–437.
    • (2014) Biometrika , vol.101 , Issue.2 , pp. 423-437
    • Kuroki, M.1    Pearl, J.2
  • 13
    • 84892459999 scopus 로고    scopus 로고
    • Correcting for test score measurement error in ANCOVA models for estimating treatment effects
    • Lockwood, J. and McCaffrey, D.F. (2014) Correcting for test score measurement error in ANCOVA models for estimating treatment effects. Journal of Educational and Behavioral Statistics, 39 (1), 22–52.
    • (2014) Journal of Educational and Behavioral Statistics , vol.39 , Issue.1 , pp. 22-52
    • Lockwood, J.1    McCaffrey, D.F.2
  • 18
    • 84882625543 scopus 로고    scopus 로고
    • Inverse probability weighting with error-prone covariates
    • McCaffrey, D.F., Lockwood, J., and Setodji, C.M. (2013) Inverse probability weighting with error-prone covariates. Biometrika, 100 (3), 671–680.
    • (2013) Biometrika , vol.100 , Issue.3 , pp. 671-680
    • McCaffrey, D.F.1    Lockwood, J.2    Setodji, C.M.3
  • 20
    • 0003753978 scopus 로고    scopus 로고
    • Computer software manual], Muthén & Muthén, Los Angeles, CA
    • Muthén, L. and Muthén, B. (1998/2012) Mplus User’s Guide, 7th edn [Computer software manual], Muthén & Muthén, Los Angeles, CA.
    • (2012) Mplus User’s Guide, 7Th Edn
    • Muthén, L.1    Muthén, B.2
  • 21
    • 84972526326 scopus 로고
    • On the application of probability theory to agricultural experiments
    • Originally published 1923
    • Neyman, J. (1923/1990) On the application of probability theory to agricultural experiments. Essay on principles. Section 9. Statistical Science, 5, 465–480. Originally published 1923.
    • (1990) Essay on Principles. Section 9. Statistical Science , vol.5 , pp. 465-480
    • Neyman, J.1
  • 22
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl, J. (1995) Causal diagrams for empirical research. Biometrika, 82 (4), 669–688.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 669-688
    • Pearl, J.1
  • 25
    • 84885461886 scopus 로고    scopus 로고
    • Linear models: A useful “microscope” for causal analysis
    • Pearl, J. (2013) Linear models: A useful “microscope” for causal analysis. Journal of Causal Inference, 1 (1), 155–170.
    • (2013) Journal of Causal Inference , vol.1 , Issue.1 , pp. 155-170
    • Pearl, J.1
  • 28
    • 84869778574 scopus 로고    scopus 로고
    • Propensity score analysis with fallible covariates: A note on a latent variable modeling approach
    • Raykov, T. (2012) Propensity score analysis with fallible covariates: A note on a latent variable modeling approach. Educational and Psychological Measurement, 72 (5), 715–733.
    • (2012) Educational and Psychological Measurement , vol.72 , Issue.5 , pp. 715-733
    • Raykov, T.1
  • 29
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P.R. and Rubin, D.B. (1983) The central role of the propensity score in observational studies for causal effects. Biometrika, 70 (1), 41–55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 30
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum, P.R. and Rubin, D.B. (1984) Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79 (387), 516–524.
    • (1984) Journal of the American Statistical Association , vol.79 , Issue.387 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 31
    • 84863306901 scopus 로고    scopus 로고
    • lavaan:An R package for structural equation modeling
    • Rosseel, Y. (2012) lavaan:An R package for structural equation modeling. Journal of Statistical Software, 48 (2), 1–36, Retrieved from http://www.jstatsoft.org/v48/ i02/.
    • (2012) Journal of Statistical Software , vol.48 , Issue.2 , pp. 1-36
    • Rosseel, Y.1
  • 32
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, D.B. (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66 (5), 688.
    • (1974) Journal of Educational Psychology , vol.66 , Issue.5 , pp. 688
    • Rubin, D.B.1
  • 33
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • Rubin, D.B. (2001) Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2, 169–188.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 169-188
    • Rubin, D.B.1
  • 34
    • 14944344423 scopus 로고    scopus 로고
    • Causal inference using potential outcomes: Design, modeling, decisions
    • Rubin, D.B. (2005) Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100, 322–331.
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 322-331
    • Rubin, D.B.1
  • 35
    • 0029959044 scopus 로고    scopus 로고
    • Matching using estimated propensity scores: Relating theory to practice
    • Rubin, D.B. and Thomas, N. (1996) Matching using estimated propensity scores: Relating theory to practice. Biometrics, 52 (1), 249–264.
    • (1996) Biometrics , vol.52 , Issue.1 , pp. 249-264
    • Rubin, D.B.1    Thomas, N.2
  • 36
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: A practical guide and simulated example
    • Schafer, J.L. and Kang, J. (2008) Average causal effects from nonrandomized studies: A practical guide and simulated example. Psychological Methods, 13 (4), 279–313.
    • (2008) Psychological Methods , vol.13 , Issue.4 , pp. 279-313
    • Schafer, J.L.1    Kang, J.2
  • 39
    • 78649577425 scopus 로고    scopus 로고
    • Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random and nonrandom assignments (with comments by Little/Long/Lin, Hill, and Rubin, and a rejoinder)
    • Shadish, W.R., Clark, M.H., and Steiner, P.M. (2008) Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random and nonrandom assignments (with comments by Little/Long/Lin, Hill, and Rubin, and a rejoinder). Journal of the American Statistical Association, 103 (484), 1334–1356.
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.484 , pp. 1334-1356
    • Shadish, W.R.1    Clark, M.H.2    Steiner, P.M.3
  • 40
    • 85143958533 scopus 로고    scopus 로고
    • Matching and propensity scores
    • Foundations (ed. T.D. Little), Oxford University Press, New York
    • teiner, P.M. and Cook, D.L. (2013) Matching and propensity scores, in The Oxford Handbook of Quantitative Methods, vol. 1, Foundations (ed. T.D. Little), Oxford University Press, New York.
    • (2013) The Oxford Handbook of Quantitative Methods , vol.1
    • Teiner, P.M.1    Cook, D.L.2
  • 41
    • 79955062603 scopus 로고    scopus 로고
    • On the importance of reliable covariate measurement in selection bias adjustments using propensity scores
    • Steiner, P.M., Cook, T.D., and Shadish, W.R. (2011) On the importance of reliable covariate measurement in selection bias adjustments using propensity scores. Journal of Educational and Behavioral Statistics, 36 (2), 213–236.
    • (2011) Journal of Educational and Behavioral Statistics , vol.36 , Issue.2 , pp. 213-236
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3
  • 42
    • 77956791074 scopus 로고    scopus 로고
    • The importance of covariate selection in controlling for selection bias in observational studies
    • Steiner, P.M., Cook, T.D., Shadish, W.R., and Clark, M.H. (2010) The importance of covariate selection in controlling for selection bias in observational studies. Psychological Methods, 15 (3), 250–267.
    • (2010) Psychological Methods , vol.15 , Issue.3 , pp. 250-267
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3    Clark, M.H.4
  • 46
    • 84899679699 scopus 로고    scopus 로고
    • Causal inference on total, direct, and indirect effects
    • (ed. A.C. Michalos), Springer-Verlag, Dordrecht, The Netherlands
    • Steyer, R., Mayer, A., and Fiege, C. (2014) Causal inference on total, direct, and indirect effects, in Encyclopedia of Quality of Life and Well-Being Research (ed. A.C. Michalos), Springer-Verlag, Dordrecht, The Netherlands, pp. 606–631.
    • (2014) Encyclopedia of Quality of Life and Well-Being Research , pp. 606-631
    • Steyer, R.1    Mayer, A.2    Fiege, C.3
  • 51
    • 43749098314 scopus 로고    scopus 로고
    • Best practices in quasi-experimental designs: Matching methods for causal inference
    • (ed. J. Osborne), Sage Publications, Thousand Oaks, CA
    • Stuart, E.A. and Rubin, D.B. (2007) Best practices in quasi-experimental designs: Matching methods for causal inference, in Best Practices in Quantitative Methods Chapter 11 (ed. J. Osborne), Sage Publications, Thousand Oaks, CA, pp. 155–176.
    • (2007) Best Practices in Quantitative Methods Chapter 11 , pp. 155-176
    • Stuart, E.A.1    Rubin, D.B.2
  • 53
    • 77949620091 scopus 로고    scopus 로고
    • Campbell’s and Rubin’s perspectives on causal inference
    • West, S.G. and Thoemmes, F. (2010) Campbell’s and Rubin’s perspectives on causal inference. Psychological Methods, 15 (1), 18–37.
    • (2010) Psychological Methods , vol.15 , Issue.1 , pp. 18-37
    • West, S.G.1    Thoemmes, F.2
  • 54
    • 84863274565 scopus 로고    scopus 로고
    • A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error
    • Yi, G., Ma, Y., and Carroll, R.J. (2012) A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error. Biometrika, 99 (1), 151–165.
    • (2012) Biometrika , vol.99 , Issue.1 , pp. 151-165
    • Yi, G.1    Ma, Y.2    Carroll, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.