메뉴 건너뛰기




Volumn 3, Issue 1, 2013, Pages 1-9

Sleep and Anesthesia Interactions: A Pharmacological Appraisal

Author keywords

Anesthesia; NREM; REM; Sleep; Slow wave

Indexed keywords


EID: 85140969279     PISSN: 21676275     EISSN: 15233855     Source Type: Journal    
DOI: 10.1007/s40140-012-0007-0     Document Type: Review
Times cited : (28)

References (111)
  • 1
    • 28044444302 scopus 로고    scopus 로고
    • Sleep, anesthesiology, and the neurobiology of arousal state control
    • Lydic R, Baghdoyan HA. Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology. 2005;6:1268–95. DOI: 10.1097/00000542-200512000-00024
    • (2005) Anesthesiology , vol.6 , pp. 1268-1295
    • Lydic, R.1    Baghdoyan, H.A.2
  • 2
    • 42349089480 scopus 로고    scopus 로고
    • General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal
    • Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;5:370–86. DOI: 10.1038/nrn2372
    • (2008) Nat Rev Neurosci , vol.5 , pp. 370-386
    • Franks, N.P.1
  • 3
    • 45549094955 scopus 로고    scopus 로고
    • Probing the mind: anesthesia and neuroimaging
    • Alkire MT. Probing the mind: anesthesia and neuroimaging. Clin Pharmacol Ther. 2008;1:149–52. DOI: 10.1038/clpt.2008.75
    • (2008) Clin Pharmacol Ther , vol.1 , pp. 149-152
    • Alkire, M.T.1
  • 4
    • 78049348352 scopus 로고    scopus 로고
    • Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness
    • • Boveroux P, Vanhaudenhuyse A, Bruno MA, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology. 2010;5:1038–53.
    • (2010) Anesthesiology , Issue.5 , pp. 1038-1053
  • 5
    • 84870612498 scopus 로고    scopus 로고
    • Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness
    • Lewis LD, Weiner VS, Mukamel EA, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2012;109:E3377–86.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E3377-E3386
    • Lewis, L.D.1    Weiner, V.S.2    Mukamel, E.A.3
  • 6
    • 84859372207 scopus 로고    scopus 로고
    • Returning from oblivion: Imaging the neural core of consciousness
    • •• Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci. 2012;14:4935–43.
    • (2012) J Neurosci , Issue.14 , pp. 4935-4943
    • Langsjo Jw1    Kaskinoro, A.M.T.K.2
  • 7
    • 0028355035 scopus 로고
    • Sleep neurobiology: relevance for mechanistic studies of anaesthesia
    • Lydic R, Biebuyck JF. Sleep neurobiology: relevance for mechanistic studies of anaesthesia. Br J Anaesth. 1994;5:506–8. DOI: 10.1093/bja/72.5.506
    • (1994) Br J Anaesth , vol.5 , pp. 506-508
    • Lydic, R.1    Biebuyck, J.F.2
  • 8
    • 0033367369 scopus 로고    scopus 로고
    • Sleep homeostasis and models of sleep regulation
    • Borbely AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999;6:557–68.
    • (1999) J Biol Rhythms , vol.6 , pp. 557-568
    • Borbely, A.A.1    Achermann, P.2
  • 9
    • 79251643981 scopus 로고    scopus 로고
    • State-specific effects of sevoflurane anesthesia on sleep homeostasis: Selective recovery of slow wave but not rapid eye movement sleep
    • • Pal D, Lipinski WJ, Walker AJ, et al. State-specific effects of sevoflurane anesthesia on sleep homeostasis: selective recovery of slow wave but not rapid eye movement sleep. Anesthesiology. 2011;2:302–10.
    • (2011) Anesthesiology , vol.2 , pp. 302-310
    • Pal, D.1    Lipinski, W.J.2    Walker, A.J.3
  • 10
    • 80053358341 scopus 로고    scopus 로고
    • Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics
    • Pick J, Chen Y, Moore JT, et al. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics. Anesthesiology. 2011;4:702–12. DOI: 10.1097/ALN.0b013e31822ddd72
    • (2011) Anesthesiology , vol.4 , pp. 702-712
    • Pick, J.1    Chen, Y.2    Moore, J.T.3
  • 11
    • 2542492937 scopus 로고    scopus 로고
    • Recovery from sleep deprivation occurs during propofol anesthesia
    • Tung A, Bergmann BM, Herrera S, et al. Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology. 2004;6:1419–26. DOI: 10.1097/00000542-200406000-00014
    • (2004) Anesthesiology , vol.6 , pp. 1419-1426
    • Tung, A.1    Bergmann, B.M.2    Herrera, S.3
  • 12
    • 0035040667 scopus 로고    scopus 로고
    • Prolonged sedation with propofol in the rat does not result in sleep deprivation
    • Tung A, Lynch JP, Mendelson WB. Prolonged sedation with propofol in the rat does not result in sleep deprivation. Anesth Analg. 2001;5:1232–6. DOI: 10.1097/00000539-200105000-00028
    • (2001) Anesth Analg , vol.5 , pp. 1232-1236
    • Tung, A.1    Lynch, J.P.2    Mendelson, W.B.3
  • 13
    • 78649877847 scopus 로고    scopus 로고
    • Effects of anesthesia on the response to sleep deprivation
    • Nelson AB, Faraguna U, Tononi G, et al. Effects of anesthesia on the response to sleep deprivation. Sleep. 2010;12:1659–67.
    • (2010) Sleep , vol.12 , pp. 1659-1667
    • Nelson, A.B.1    Faraguna, U.2    Tononi, G.3
  • 14
    • 79953663984 scopus 로고    scopus 로고
    • Propofol anesthesia and sleep: a high-density EEG study
    • Murphy M, Bruno MA, Riedner BA, et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;3:283–91.
    • (2011) Sleep , vol.3 , pp. 283-291
    • Murphy, M.1    Bruno, M.A.2    Riedner, B.A.3
  • 15
    • 77951700387 scopus 로고    scopus 로고
    • Isoflurane anesthesia does not satisfy the homeostatic need for rapid eye movement sleep
    • Mashour GA, Lipinski WJ, Matlen LB, et al. Isoflurane anesthesia does not satisfy the homeostatic need for rapid eye movement sleep. Anesth Analg. 2010;5:1283–9. DOI: 10.1213/ANE.0b013e3181d3e861
    • (2010) Anesth Analg , vol.5 , pp. 1283-1289
    • Mashour, G.A.1    Lipinski, W.J.2    Matlen, L.B.3
  • 16
    • 0036792294 scopus 로고    scopus 로고
    • Sleep deprivation potentiates the onset and duration of loss of righting reflex induced by propofol and isoflurane
    • Tung A, Szafran MJ, Bluhm B, et al. Sleep deprivation potentiates the onset and duration of loss of righting reflex induced by propofol and isoflurane. Anesthesiology. 2002;4:906–11. DOI: 10.1097/00000542-200210000-00024
    • (2002) Anesthesiology , vol.4 , pp. 906-911
    • Tung, A.1    Szafran, M.J.2    Bluhm, B.3
  • 17
    • 77952938154 scopus 로고    scopus 로고
    • Neurobiology of sleep
    • Lu BS, Zee PC. Neurobiology of sleep. Clin Chest Med. 2010;2:309–18. DOI: 10.1016/j.ccm.2010.02.004
    • (2010) Clin Chest Med , vol.2 , pp. 309-318
    • Lu, B.S.1    Zee, P.C.2
  • 18
    • 78650230533 scopus 로고    scopus 로고
    • Sleep state switching
    • Saper CB, Fuller PM, Pedersen NP, et al. Sleep state switching. Neuron. 2010;6:1023–42. DOI: 10.1016/j.neuron.2010.11.032
    • (2010) Neuron , vol.6 , pp. 1023-1042
    • Saper, C.B.1    Fuller, P.M.2    Pedersen, N.P.3
  • 19
    • 70449406919 scopus 로고    scopus 로고
    • The neurobiology of sleep
    • Siegel JM. The neurobiology of sleep. Semin Neurol. 2009;4:277–96. DOI: 10.1055/s-0029-1237118
    • (2009) Semin Neurol , vol.4 , pp. 277-296
    • Siegel, J.M.1
  • 20
    • 4644369747 scopus 로고    scopus 로고
    • Paradoxical REM sleep promoting and permitting neuronal networks
    • Jones BE. Paradoxical REM sleep promoting and permitting neuronal networks. Arch Ital Biol. 2004;4:379–96.
    • (2004) Arch Ital Biol , vol.4 , pp. 379-396
    • Jones, B.E.1
  • 22
    • 0025943413 scopus 로고
    • Release of acetylcholine and GABA, and activity of their synthesizing enzymes in the rat pontine reticular formation
    • Camacho-Arroyo I, Alvarado R, Tapia R. Release of acetylcholine and GABA, and activity of their synthesizing enzymes in the rat pontine reticular formation. Neurochem Res. 1991;8:837–41. DOI: 10.1007/BF00965530
    • (1991) Neurochem Res , vol.8 , pp. 837-841
    • Camacho-Arroyo, I.1    Alvarado, R.2    Tapia, R.3
  • 23
    • 43749110731 scopus 로고    scopus 로고
    • Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness
    • Watson CJ, Soto-Calderon H, Lydic R, et al. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep. 2008;4:453–64.
    • (2008) Sleep , vol.4 , pp. 453-464
    • Watson, C.J.1    Soto-Calderon, H.2    Lydic, R.3
  • 24
    • 77956856103 scopus 로고    scopus 로고
    • Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness
    • Brevig HN, Watson CJ, Lydic R, et al. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness. Sleep. 2010;10:1285–93.
    • (2010) Sleep , vol.10 , pp. 1285-1293
    • Brevig, H.N.1    Watson, C.J.2    Lydic, R.3
  • 25
    • 79960556583 scopus 로고    scopus 로고
    • Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation
    • Watson CJ, Lydic R, Baghdoyan HA. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J Neurochem. 2011;4:571–80. DOI: 10.1111/j.1471-4159.2011.07350.x
    • (2011) J Neurochem , vol.4 , pp. 571-580
    • Watson, C.J.1    Lydic, R.2    Baghdoyan, H.A.3
  • 26
    • 0031866121 scopus 로고    scopus 로고
    • Enhancement of rapid eye movement sleep in the rat by cholinergic and adenosinergic agonists infused into the pontine reticular formation
    • Marks GA, Birabil CG. Enhancement of rapid eye movement sleep in the rat by cholinergic and adenosinergic agonists infused into the pontine reticular formation. Neuroscience. 1998;1:29–37. DOI: 10.1016/S0306-4522(98)00005-0
    • (1998) Neuroscience , vol.1 , pp. 29-37
    • Marks, G.A.1    Birabil, C.G.2
  • 27
    • 33644789510 scopus 로고    scopus 로고
    • Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep
    • Coleman CG, Baghdoyan HA, Lydic R. Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem. 2006;6:1750–9. DOI: 10.1111/j.1471-4159.2006.03700.x
    • (2006) J Neurochem , vol.6 , pp. 1750-1759
    • Coleman, C.G.1    Baghdoyan, H.A.2    Lydic, R.3
  • 28
    • 79951848552 scopus 로고    scopus 로고
    • Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep
    • Vanini G, Wathen BL, Lydic R, et al. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci. 2011;7:2649–56. DOI: 10.1523/JNEUROSCI.5674-10.2011
    • (2011) J Neurosci , vol.7 , pp. 2649-2656
    • Vanini, G.1    Wathen, B.L.2    Lydic, R.3
  • 29
    • 51449091381 scopus 로고    scopus 로고
    • Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system
    • Marks GA, Sachs OW, Birabil CG. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system. Neuroscience. 2008;1:1–10. DOI: 10.1016/j.neuroscience.2008.06.067
    • (2008) Neuroscience , vol.1 , pp. 1-10
    • Marks, G.A.1    Sachs, O.W.2    Birabil, C.G.3
  • 30
    • 0032823362 scopus 로고    scopus 로고
    • Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism
    • Xi MC, Morales FR, Chase MH. Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol. 1999;4:2015–9.
    • (1999) J Neurophysiol , vol.4 , pp. 2015-2019
    • Xi, M.C.1    Morales, F.R.2    Chase, M.H.3
  • 31
    • 0041315465 scopus 로고    scopus 로고
    • GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats
    • Sanford LD, Tang X, Xiao J, et al. GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats. J Neurophysiol. 2003;2:938–45. DOI: 10.1152/jn.00993.2002
    • (2003) J Neurophysiol , vol.2 , pp. 938-945
    • Sanford, L.D.1    Tang, X.2    Xiao, J.3
  • 32
    • 77956825924 scopus 로고    scopus 로고
    • GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness
    • • Flint RR, Chang T, Lydic R, et al. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness. J Neurosci. 2010;37:12301–9.
    • (2010) J Neurosci , Issue.37 , pp. 12301-12309
  • 33
    • 58149292202 scopus 로고    scopus 로고
    • Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia
    • Vanini G, Watson CJ, Lydic R, et al. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology. 2008;6:978–88. DOI: 10.1097/ALN.0b013e31818e3b1b
    • (2008) Anesthesiology , vol.6 , pp. 978-988
    • Vanini, G.1    Watson, C.J.2    Lydic, R.3
  • 34
    • 45549108533 scopus 로고    scopus 로고
    • Noradrenergic modulation of arousal
    • Berridge CW. Noradrenergic modulation of arousal. Brain Res Rev. 2008;1:1–17. DOI: 10.1016/j.brainresrev.2007.10.013
    • (2008) Brain Res Rev , vol.1 , pp. 1-17
    • Berridge, C.W.1
  • 35
    • 0019855733 scopus 로고
    • Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle
    • Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981;8:876–86.
    • (1981) J Neurosci , vol.8 , pp. 876-886
    • Aston-Jones, G.1    Bloom, F.E.2
  • 36
    • 78649381832 scopus 로고    scopus 로고
    • Tuning arousal with optogenetic modulation of locus coeruleus neurons
    • • Carter ME, Yizhar O, Chikahisa S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;12:1526–33.
    • (2010) Nat Neurosci , Issue.12 , pp. 1526-1533
  • 37
    • 84866852784 scopus 로고    scopus 로고
    • Mechanism for Hypocretin-mediated sleep-to-wake transitions
    • Carter ME, Brill J, Bonnavion P, et al. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA. 2012;39:E2635–44. DOI: 10.1073/pnas.1202526109
    • (2012) Proc Natl Acad Sci USA , vol.39 , pp. E2635-E2644
    • Carter, M.E.1    Brill, J.2    Bonnavion, P.3
  • 38
    • 85027958353 scopus 로고    scopus 로고
    • Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine beta-hydroxylase knockout mice
    • Hu FY, Hanna GM, Han W, et al. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine beta-hydroxylase knockout mice. Anesthesiology. 2012;5:1006–17. DOI: 10.1097/ALN.0b013e3182700ab9
    • (2012) Anesthesiology , vol.5 , pp. 1006-1017
    • Hu, F.Y.1    Hanna, G.M.2    Han, W.3
  • 39
    • 77955613374 scopus 로고    scopus 로고
    • A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia
    • Friedman EB, Sun Y, Moore JT, et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS ONE. 2010;7:e11903. DOI: 10.1371/journal.pone.0011903
    • (2010) PLoS ONE , vol.7
    • Friedman, E.B.1    Sun, Y.2    Moore, J.T.3
  • 40
    • 81855183846 scopus 로고    scopus 로고
    • Role of coerulean noradrenergic neurones in general anaesthesia in rats
    • Kushikata T, Yoshida H, Kudo M, et al. Role of coerulean noradrenergic neurones in general anaesthesia in rats. Br J Anaesth. 2011;6:924–9. DOI: 10.1093/bja/aer303
    • (2011) Br J Anaesth , vol.6 , pp. 924-929
    • Kushikata, T.1    Yoshida, H.2    Kudo, M.3
  • 41
    • 0037313063 scopus 로고    scopus 로고
    • The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects
    • Nelson LE, Lu J, Guo T, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;2:428–36. DOI: 10.1097/00000542-200302000-00024
    • (2003) Anesthesiology , vol.2 , pp. 428-436
    • Nelson, L.E.1    Lu, J.2    Guo, T.3
  • 42
    • 60849097577 scopus 로고    scopus 로고
    • The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse
    • Zecharia AY, Nelson LE, Gent TC, et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci. 2009;7:2177–87. DOI: 10.1523/JNEUROSCI.4997-08.2009
    • (2009) J Neurosci , vol.7 , pp. 2177-2187
    • Zecharia, A.Y.1    Nelson, L.E.2    Gent, T.C.3
  • 43
    • 70350454933 scopus 로고    scopus 로고
    • Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents
    • Gompf H, Chen J, Sun Y, et al. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology. 2009;5:1001–9. DOI: 10.1097/ALN.0b013e3181b764b3
    • (2009) Anesthesiology , vol.5 , pp. 1001-1009
    • Gompf, H.1    Chen, J.2    Sun, Y.3
  • 44
    • 66049126873 scopus 로고    scopus 로고
    • Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells
    • Gilsbach R, Roser C, Beetz N, et al. Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol Pharmacol. 2009;5:1160–70. DOI: 10.1124/mol.109.054544
    • (2009) Mol Pharmacol , vol.5 , pp. 1160-1170
    • Gilsbach, R.1    Roser, C.2    Beetz, N.3
  • 45
    • 85027942398 scopus 로고    scopus 로고
    • Noradrenergic trespass in anesthetic and sedative states
    • Sanders RD, Maze M. Noradrenergic trespass in anesthetic and sedative states. Anesthesiology. 2012;5:945–7. DOI: 10.1097/ALN.0b013e3182700c93
    • (2012) Anesthesiology , vol.5 , pp. 945-947
    • Sanders, R.D.1    Maze, M.2
  • 46
    • 80053365605 scopus 로고    scopus 로고
    • Methylphenidate actively induces emergence from general anesthesia
    • Solt K, Cotten JF, Cimenser A, et al. Methylphenidate actively induces emergence from general anesthesia. Anesthesiology. 2011;4:791–803. DOI: 10.1097/ALN.0b013e31822e92e5
    • (2011) Anesthesiology , vol.4 , pp. 791-803
    • Solt, K.1    Cotten, J.F.2    Cimenser, A.3
  • 47
    • 84860757206 scopus 로고    scopus 로고
    • Active emergence from propofol general anesthesia is induced by methylphenidate
    • Chemali JJ, Van Dort CJ, Brown EN, et al. Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology. 2012;5:998–1005. DOI: 10.1097/ALN.0b013e3182518bfc
    • (2012) Anesthesiology , vol.5 , pp. 998-1005
    • Chemali, J.J.1    Van Dort, C.J.2    Brown, E.N.3
  • 49
    • 85140963589 scopus 로고    scopus 로고
    • Electrical microstimulation of the ventral tegmental area induces emergence from general anesthesia
    • Washington, DC
    • Solt K, Van Dort CJ, Chemali JJ, et al. Electrical microstimulation of the ventral tegmental area induces emergence from general anesthesia. In: American Society of anesthesiologists annual meeting. 2012. Washington, DC.
    • (2012) American Society of Anesthesiologists Annual Meeting
    • Solt, K.1    van Dort, C.J.2    Chemali, J.J.3
  • 50
    • 0025100585 scopus 로고
    • Modulating role of dopamine on anesthetic requirements
    • Segal IS, Walton JK, Irwin I, et al. Modulating role of dopamine on anesthetic requirements. Eur J Pharmacol. 1990;1:9–15. DOI: 10.1016/0014-2999(90)94055-3
    • (1990) Eur J Pharmacol , vol.1 , pp. 9-15
    • Segal, I.S.1    Walton, J.K.2    Irwin, I.3
  • 51
    • 0032563681 scopus 로고    scopus 로고
    • Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats
    • Szymusiak R, Alam N, Steininger TL, et al. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res. 1998;1–2:178–88. DOI: 10.1016/S0006-8993(98)00631-3
    • (1998) Brain Res , vol.1-2 , pp. 178-188
    • Szymusiak, R.1    Alam, N.2    Steininger, T.L.3
  • 52
    • 0029671044 scopus 로고    scopus 로고
    • Activation of ventrolateral preoptic neurons during sleep
    • Sherin JE, Shiromani PJ, McCarley RW, et al. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;5246:216–9. DOI: 10.1126/science.271.5246.216
    • (1996) Science , vol.5246 , pp. 216-219
    • Sherin, J.E.1    Shiromani, P.J.2    McCarley, R.W.3
  • 53
    • 0032526450 scopus 로고    scopus 로고
    • Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat
    • Sherin JE, Elmquist JK, Torrealba F, et al. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci. 1998;12:4705–21.
    • (1998) J Neurosci , vol.12 , pp. 4705-4721
    • Sherin, J.E.1    Elmquist, J.K.2    Torrealba, F.3
  • 54
    • 0024603246 scopus 로고
    • Histamine-immunoreactive nerve fibers in the rat brain
    • Panula P, Pirvola U, Auvinen S, et al. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience. 1989;3:585–610. DOI: 10.1016/0306-4522(89)90007-9
    • (1989) Neuroscience , vol.3 , pp. 585-610
    • Panula, P.1    Pirvola, U.2    Auvinen, S.3
  • 55
    • 33749517735 scopus 로고    scopus 로고
    • Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse
    • Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006;40:10292–8. DOI: 10.1523/JNEUROSCI.2341-06.2006
    • (2006) J Neurosci , vol.40 , pp. 10292-10298
    • Takahashi, K.1    Lin, J.S.2    Sakai, K.3
  • 56
    • 0036785886 scopus 로고    scopus 로고
    • The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway
    • Nelson LE, Guo TZ, Lu J, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;10:979–84. DOI: 10.1038/nn913
    • (2002) Nat Neurosci , vol.10 , pp. 979-984
    • Nelson, L.E.1    Guo, T.Z.2    Lu, J.3
  • 57
    • 43249106443 scopus 로고    scopus 로고
    • Role of endogenous sleep-wake and analgesic systems in anesthesia
    • Lu J, Nelson LE, Franks N, et al. Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol. 2008;4:648–62. DOI: 10.1002/cne.21685
    • (2008) J Comp Neurol , vol.4 , pp. 648-662
    • Lu, J.1    Nelson, L.E.2    Franks, N.3
  • 58
    • 73449084084 scopus 로고    scopus 로고
    • Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus
    • Li KY, Guan YZ, Krnjevic K, et al. Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus. Anesthesiology. 2009;6:1271–8. DOI: 10.1097/ALN.0b013e3181bf1d79
    • (2009) Anesthesiology , vol.6 , pp. 1271-1278
    • Li, K.Y.1    Guan, Y.Z.2    Krnjevic, K.3
  • 59
    • 84868541589 scopus 로고    scopus 로고
    • Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis
    • • Moore JT, Chen J, Han B, et al. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol. 2012;22:2008–16.
    • (2012) Curr Biol , vol.22 , pp. 2008-2016
    • Moore, J.T.1    Chen, J.2    Han, B.3
  • 60
    • 84866406441 scopus 로고    scopus 로고
    • GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness
    • • Zecharia AY, Yu X, Gotz T, et al. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci. 2012;38:13062–75.
    • (2012) J Neurosci , Issue.38 , pp. 13062-13075
  • 61
    • 0034808423 scopus 로고    scopus 로고
    • Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital
    • Devor M, Zalkind V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain. 2001;1:101–12. DOI: 10.1016/S0304-3959(01)00345-1
    • (2001) Pain , vol.1 , pp. 101-112
    • Devor, M.1    Zalkind, V.2
  • 62
    • 81155131308 scopus 로고    scopus 로고
    • The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia
    • Eikermann M, Vetrivelan R, Grosse-Sundrup M, et al. The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia. Brain Res. 2011;1426:30–7.
    • (2011) Brain Res , vol.1426 , pp. 30
    • Eikermann, M.1    Vetrivelan, R.2    Grosse-Sundrup, M.3
  • 63
    • 0032402181 scopus 로고    scopus 로고
    • Neurons containing hypocretin (orexin) project to multiple neuronal systems
    • Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;23:9996–10015.
    • (1998) J Neurosci , vol.23 , pp. 9996-10015
    • Peyron, C.1    Tighe, D.K.2    van den Pol, A.N.3
  • 64
    • 22244443005 scopus 로고    scopus 로고
    • Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle
    • Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;28:6716–20. DOI: 10.1523/JNEUROSCI.1887-05.2005
    • (2005) J Neurosci , vol.28 , pp. 6716-6720
    • Lee, M.G.1    Hassani, O.K.2    Jones, B.E.3
  • 65
    • 19544376694 scopus 로고    scopus 로고
    • Behavioral correlates of activity in identified hypocretin/orexin neurons
    • Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;5:787–98. DOI: 10.1016/j.neuron.2005.04.035
    • (2005) Neuron , vol.5 , pp. 787-798
    • Mileykovskiy, B.Y.1    Kiyashchenko, L.I.2    Siegel, J.M.3
  • 66
    • 0033588184 scopus 로고    scopus 로고
    • Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation
    • Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;4:437–51. DOI: 10.1016/S0092-8674(00)81973-X
    • (1999) Cell , vol.4 , pp. 437-451
    • Chemelli, R.M.1    Willie, J.T.2    Sinton, C.M.3
  • 67
    • 0034992322 scopus 로고    scopus 로고
    • Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity
    • Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;2:345–54. DOI: 10.1016/S0896-6273(01)00293-8
    • (2001) Neuron , vol.2 , pp. 345-354
    • Hara, J.1    Beuckmann, C.T.2    Nambu, T.3
  • 68
    • 39549098333 scopus 로고    scopus 로고
    • An essential role for orexins in emergence from general anesthesia
    • Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;4:1309–14. DOI: 10.1073/pnas.0707146105
    • (2008) Proc Natl Acad Sci USA , vol.4 , pp. 1309-1314
    • Kelz, M.B.1    Sun, Y.2    Chen, J.3
  • 69
    • 67349281730 scopus 로고    scopus 로고
    • Activation of orexin signal in basal forebrain facilitates the emergence from sevoflurane anesthesia in rat
    • Dong H, Niu J, Su B, et al. Activation of orexin signal in basal forebrain facilitates the emergence from sevoflurane anesthesia in rat. Neuropeptides. 2009;3:179–85. DOI: 10.1016/j.npep.2009.04.006
    • (2009) Neuropeptides , vol.3 , pp. 179-185
    • Dong, H.1    Niu, J.2    Su, B.3
  • 70
    • 79952248679 scopus 로고    scopus 로고
    • Effects of orexin-A on propofol anesthesia in rats
    • Shirasaka T, Yonaha T, Onizuka S, et al. Effects of orexin-A on propofol anesthesia in rats. J Anesth. 2011;1:65–71. DOI: 10.1007/s00540-010-1071-6
    • (2011) J Anesth , vol.1 , pp. 65-71
    • Shirasaka, T.1    Yonaha, T.2    Onizuka, S.3
  • 71
    • 84866922347 scopus 로고    scopus 로고
    • Orexin-a facilitates emergence from propofol anesthesia in the rat
    • Zhang LN, Li ZJ, Tong L, et al. Orexin-a facilitates emergence from propofol anesthesia in the rat. Anesth Analg. 2012;4:789–96. DOI: 10.1213/ANE.0b013e3182645ea3
    • (2012) Anesth Analg , vol.4 , pp. 789-796
    • Zhang, L.N.1    Li, Z.J.2    Tong, L.3
  • 72
    • 0029146025 scopus 로고
    • Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation
    • Szymusiak R. Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep. 1995;6:478–500.
    • (1995) Sleep , vol.6 , pp. 478-500
    • Szymusiak, R.1
  • 73
    • 84882889150 scopus 로고    scopus 로고
    • Basic mechanisms of sleep-wake states
    • Kryger MH, Roth T, Dement WC
    • Jones BE, Basic mechanisms of sleep-wake states. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 2005. p. 136–53.
    • (2005) Principles and Practice of Sleep Medicine , pp. 136-153
    • Jones, B.E.1
  • 74
    • 79952700083 scopus 로고    scopus 로고
    • Lesion of cholinergic neurons in nucleus basalis enhances response to general anesthetics
    • Leung LS, Petropoulos S, Shen B, et al. Lesion of cholinergic neurons in nucleus basalis enhances response to general anesthetics. Exp Neurol. 2011;2:259–69. DOI: 10.1016/j.expneurol.2011.01.019
    • (2011) Exp Neurol , vol.2 , pp. 259-269
    • Leung, L.S.1    Petropoulos, S.2    Shen, B.3
  • 75
    • 0022407042 scopus 로고
    • The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat
    • Jones BE, Yang TZ. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol. 1985;1:56–92. DOI: 10.1002/cne.902420105
    • (1985) J Comp Neurol , vol.1 , pp. 56-92
    • Jones, B.E.1    Yang, T.Z.2
  • 76
    • 70349682764 scopus 로고    scopus 로고
    • Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia
    • Luo T, Leung LS. Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology. 2009;4:725–33. DOI: 10.1097/ALN.0b013e3181b061a0
    • (2009) Anesthesiology , vol.4 , pp. 725-733
    • Luo, T.1    Leung, L.S.2
  • 77
    • 80053355071 scopus 로고    scopus 로고
    • Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats
    • Pillay S, Vizuete JA, McCallum JB, et al. Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats. Anesthesiology. 2011;4:733–42. DOI: 10.1097/ALN.0b013e31822c5ee1
    • (2011) Anesthesiology , vol.4 , pp. 733-742
    • Pillay, S.1    Vizuete, J.A.2    McCallum, J.B.3
  • 78
    • 55149116510 scopus 로고    scopus 로고
    • The energy hypothesis of sleep revisited
    • Scharf MT, Naidoo N, Zimmerman JE, et al. The energy hypothesis of sleep revisited. Prog Neurobiol. 2008;3:264–80. DOI: 10.1016/j.pneurobio.2008.08.003
    • (2008) Prog Neurobiol , vol.3 , pp. 264-280
    • Scharf, M.T.1    Naidoo, N.2    Zimmerman, J.E.3
  • 79
    • 0030995841 scopus 로고    scopus 로고
    • Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness
    • Porkka-Heiskanen T, Strecker RE, Thakkar M, et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;5316:1265–8. DOI: 10.1126/science.276.5316.1265
    • (1997) Science , vol.5316 , pp. 1265-1268
    • Porkka-Heiskanen, T.1    Strecker, R.E.2    Thakkar, M.3
  • 80
    • 0034674938 scopus 로고    scopus 로고
    • Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study
    • Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience. 2000;3:507–17. DOI: 10.1016/S0306-4522(00)00220-7
    • (2000) Neuroscience , vol.3 , pp. 507-517
    • Porkka-Heiskanen, T.1    Strecker, R.E.2    McCarley, R.W.3
  • 81
    • 0032743992 scopus 로고    scopus 로고
    • Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats
    • Basheer R, Porkka-Heiskanen T, Stenberg D, et al. Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res. 1999;1–2:1–10. DOI: 10.1016/S0169-328X(99)00219-3
    • (1999) Brain Res Mol Brain Res , vol.1-2 , pp. 1-10
    • Basheer, R.1    Porkka-Heiskanen, T.2    Stenberg, D.3
  • 82
    • 0031007397 scopus 로고    scopus 로고
    • Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat
    • Portas CM, Thakkar M, Rainnie DG, et al. Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience. 1997;1:225–35. DOI: 10.1016/S0306-4522(96)00640-9
    • (1997) Neuroscience , vol.1 , pp. 225-235
    • Portas, C.M.1    Thakkar, M.2    Rainnie, D.G.3
  • 83
    • 80053360036 scopus 로고    scopus 로고
    • Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat
    • Gauthier EA, Guzick SE, Brummett CM, et al. Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat. Anesthesiology. 2011;4:743–53. DOI: 10.1097/ALN.0b013e31822e9f85
    • (2011) Anesthesiology , vol.4 , pp. 743-753
    • Gauthier, E.A.1    Guzick, S.E.2    Brummett, C.M.3
  • 84
    • 20144365152 scopus 로고    scopus 로고
    • Sleep, epilepsy and thalamic reticular inhibitory neurons
    • Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci. 2005;6:317–24. DOI: 10.1016/j.tins.2005.03.007
    • (2005) Trends Neurosci , vol.6 , pp. 317-324
    • Steriade, M.1
  • 85
    • 0142154260 scopus 로고    scopus 로고
    • Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition
    • Wan X, Mathers DA, Puil E. Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition. Neuroscience. 2003;4:947–58. DOI: 10.1016/j.neuroscience.2003.07.002
    • (2003) Neuroscience , vol.4 , pp. 947-958
    • Wan, X.1    Mathers, D.A.2    Puil, E.3
  • 86
    • 33644959979 scopus 로고    scopus 로고
    • Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA(A) receptor chloride channels
    • Ying SW, Goldstein PA. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA(A) receptor chloride channels. Mol Pain. 2005;2.
    • (2005) Mol Pain , vol.2
    • Ying, S.W.1    Goldstein, P.A.2
  • 87
    • 50049092351 scopus 로고    scopus 로고
    • Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane
    • Budde T, Coulon P, Pawlowski M, et al. Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane. Pflugers Arch. 2008;6:1061–73. DOI: 10.1007/s00424-008-0482-9
    • (2008) Pflugers Arch , vol.6 , pp. 1061-1073
    • Budde, T.1    Coulon, P.2    Pawlowski, M.3
  • 88
    • 77954011706 scopus 로고    scopus 로고
    • Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro
    • Joksovic PM and Todorovic SM. Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro. Ann N Y Acad Sci. 2010;1199:36–42.
    • (2010) Ann N Y Acad Sci , vol.1199 , pp. 36-42
    • Joksovic, P.M.1    Todorovic, S.M.2
  • 89
    • 58549100304 scopus 로고    scopus 로고
    • Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms
    • • Ying SW, Werner DF, Homanics GE, et al. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms. Neuropharmacology. 2009;2:438–47.
    • (2009) Neuropharmacology , Issue.2 , pp. 438-447
  • 90
    • 25644453383 scopus 로고    scopus 로고
    • General anesthesia and the neural correlates of consciousness
    • Alkire MT and Miller J. General anesthesia and the neural correlates of consciousness. Prog Brain Res. 2005;150:229–44.
    • (2005) Prog Brain Res , vol.150 , pp. 229-244
    • Alkire, M.T.1    Miller, J.2
  • 91
    • 84872367178 scopus 로고    scopus 로고
    • Cognitive processing during the transition to sleep
    • Goupil L, Bekinschtein T. Cognitive processing during the transition to sleep. Arch Ital Biol. 2012;2–3:140–54.
    • (2012) Arch Ital Biol , vol.2-3 , pp. 140-154
    • Goupil, L.1    Bekinschtein, T.2
  • 92
    • 58749091109 scopus 로고    scopus 로고
    • Modeling the GABAergic action of etomidate on the thalamocortical system
    • Talavera JA, Esser SK, Amzica F, et al. Modeling the GABAergic action of etomidate on the thalamocortical system. Anesth Analg. 2009;1:160–7. DOI: 10.1213/ane.0b013e31818d40aa
    • (2009) Anesth Analg , vol.1 , pp. 160-167
    • Talavera, J.A.1    Esser, S.K.2    Amzica, F.3
  • 93
    • 65549134685 scopus 로고    scopus 로고
    • Volatile anesthetic action in a computational model of the thalamic reticular nucleus
    • Gottschalk A, Miotke SA. Volatile anesthetic action in a computational model of the thalamic reticular nucleus. Anesthesiology. 2009;5:996–1010. DOI: 10.1097/ALN.0b013e31819db923
    • (2009) Anesthesiology , vol.5 , pp. 996-1010
    • Gottschalk, A.1    Miotke, S.A.2
  • 94
    • 78651112737 scopus 로고    scopus 로고
    • Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness
    • Ching S, Cimenser A, Purdon PL, et al. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci USA. 2010;52:22665–70. DOI: 10.1073/pnas.1017069108
    • (2010) Proc Natl Acad Sci USA , vol.52 , pp. 22665-22670
    • Ching, S.1    Cimenser, A.2    Purdon, P.L.3
  • 95
    • 34547598476 scopus 로고    scopus 로고
    • Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat
    • Alkire MT, McReynolds JR, Hahn EL, et al. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 2007;2:264–72. DOI: 10.1097/01.anes.0000270741.33766.24
    • (2007) Anesthesiology , vol.2 , pp. 264-272
    • Alkire, M.T.1    McReynolds, J.R.2    Hahn, E.L.3
  • 96
    • 65349192797 scopus 로고    scopus 로고
    • Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia
    • Alkire MT, Asher CD, Franciscus AM, et al. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology. 2009;4:766–73. DOI: 10.1097/ALN.0b013e31819c461c
    • (2009) Anesthesiology , vol.4 , pp. 766-773
    • Alkire, M.T.1    Asher, C.D.2    Franciscus, A.M.3
  • 97
    • 0034106011 scopus 로고    scopus 로고
    • Rest in Drosophila is a sleep-like state
    • Hendricks JC, Finn SM, Panckeri KA, et al. Rest in Drosophila is a sleep-like state. Neuron. 2000;1:129–38. DOI: 10.1016/S0896-6273(00)80877-6
    • (2000) Neuron , vol.1 , pp. 129-138
    • Hendricks, J.C.1    Finn, S.M.2    Panckeri, K.A.3
  • 98
    • 38749092606 scopus 로고    scopus 로고
    • Lethargus is a Caenorhabditis elegans sleep-like state
    • Raizen DM, Zimmerman JE, Maycock MH, et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature. 2008;7178:569–72. DOI: 10.1038/nature06535
    • (2008) Nature , vol.7178 , pp. 569-572
    • Raizen, D.M.1    Zimmerman, J.E.2    Maycock, M.H.3
  • 99
    • 25844463573 scopus 로고    scopus 로고
    • Breakdown of cortical effective connectivity during sleep
    • Massimini M, Ferrarelli F, Huber R, et al. Breakdown of cortical effective connectivity during sleep. Science. 2005;5744:2228–32. DOI: 10.1126/science.1117256
    • (2005) Science , vol.5744 , pp. 2228-2232
    • Massimini, M.1    Ferrarelli, F.2    Huber, R.3
  • 100
    • 77249083662 scopus 로고    scopus 로고
    • Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness
    • Ferrarelli F, Massimini M, Sarasso S, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA. 2010;6:2681–6. DOI: 10.1073/pnas.0913008107
    • (2010) Proc Natl Acad Sci USA , vol.6 , pp. 2681-2686
    • Ferrarelli, F.1    Massimini, M.2    Sarasso, S.3
  • 101
    • 84869492490 scopus 로고    scopus 로고
    • The role of default network deactivation in cognition and disease
    • Anticevic A, Cole MW, Murray JD, et al. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;12:584–92. DOI: 10.1016/j.tics.2012.10.008
    • (2012) Trends Cogn Sci , vol.12 , pp. 584-592
    • Anticevic, A.1    Cole, M.W.2    Murray, J.D.3
  • 102
    • 67650457363 scopus 로고    scopus 로고
    • Decoupling of the brain’s default mode network during deep sleep
    • Horovitz SG, Braun AR, Carr WS, et al. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci USA. 2009;27:11376–81. DOI: 10.1073/pnas.0901435106
    • (2009) Proc Natl Acad Sci USA , vol.27 , pp. 11376-11381
    • Horovitz, S.G.1    Braun, A.R.2    Carr, W.S.3
  • 103
    • 80051757551 scopus 로고    scopus 로고
    • Development of the brain’s default mode network from wakefulness to slow wave sleep
    • Samann PG, Wehrle R, Hoehn D, et al. Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex. 2011;9:2082–93. DOI: 10.1093/cercor/bhq295
    • (2011) Cereb Cortex , vol.9 , pp. 2082-2093
    • Samann, P.G.1    Wehrle, R.2    Hoehn, D.3
  • 104
    • 79957923335 scopus 로고    scopus 로고
    • Brain connectivity in pathological and pharmacological coma
    • Noirhomme Q, Soddu A, Lehembre R, et al. Brain connectivity in pathological and pharmacological coma. Front Syst Neurosci. 2010;160.
    • (2010) Front Syst Neurosci , vol.160
    • Noirhomme, Q.1    Soddu, A.2    Lehembre, R.3
  • 105
    • 79957762902 scopus 로고    scopus 로고
    • Tracking brain states under general anesthesia by using global coherence analysis
    • Cimenser A, Purdon PL, Pierce ET, et al. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci USA. 2011;21:8832–7. DOI: 10.1073/pnas.1017041108
    • (2011) Proc Natl Acad Sci USA , vol.21 , pp. 8832-8837
    • Cimenser, A.1    Purdon, P.L.2    Pierce, E.T.3
  • 106
    • 47249161547 scopus 로고    scopus 로고
    • Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?
    • Boly M, Phillips C, Tshibanda L, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci. 2008;1129:119–29.
    • (2008) Ann N Y Acad Sci , vol.1129 , pp. 119-129
    • Boly, M.1    Phillips, C.2    Tshibanda, L.3
  • 107
    • 78049328459 scopus 로고    scopus 로고
    • Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration
    • Lee U, Oh G, Kim S, et al. Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration. Anesthesiology. 2010;5:1081–91. DOI: 10.1097/ALN.0b013e3181f229b5
    • (2010) Anesthesiology , vol.5 , pp. 1081-1091
    • Lee, U.1    Oh, G.2    Kim, S.3
  • 108
    • 23844558150 scopus 로고    scopus 로고
    • Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat
    • Imas OA, Ropella KM, Ward BD, et al. Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci Lett. 2005;3:145–50. DOI: 10.1016/j.neulet.2005.06.018
    • (2005) Neurosci Lett , vol.3 , pp. 145-150
    • Imas, O.A.1    Ropella, K.M.2    Ward, B.D.3
  • 109
    • 80053589292 scopus 로고    scopus 로고
    • Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients
    • •• Ku SW, Lee U, Noh GJ, et al. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS ONE. 2011;10:e25155.
    • (2011) Plos ONE , Issue.10
    • Swlee, •.•.K.1    Noh, U.G.J.2
  • 110
    • 70349121163 scopus 로고    scopus 로고
    • The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans
    • Lee U, Kim S, Noh GJ, et al. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn. 2009;4:1069–78. DOI: 10.1016/j.concog.2009.04.004
    • (2009) Conscious Cogn , vol.4 , pp. 1069-1078
    • Lee, U.1    Kim, S.2    Noh, G.J.3
  • 111
    • 84861140603 scopus 로고    scopus 로고
    • Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness
    • Boly M, Moran R, Murphy M, et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci. 2012;20:7082–90. DOI: 10.1523/JNEUROSCI.3769-11.2012
    • (2012) J Neurosci , vol.20 , pp. 7082-7090
    • Boly, M.1    Moran, R.2    Murphy, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.