-
1
-
-
28044444302
-
Sleep, anesthesiology, and the neurobiology of arousal state control
-
Lydic R, Baghdoyan HA. Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology. 2005;6:1268–95. DOI: 10.1097/00000542-200512000-00024
-
(2005)
Anesthesiology
, vol.6
, pp. 1268-1295
-
-
Lydic, R.1
Baghdoyan, H.A.2
-
2
-
-
42349089480
-
General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal
-
Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;5:370–86. DOI: 10.1038/nrn2372
-
(2008)
Nat Rev Neurosci
, vol.5
, pp. 370-386
-
-
Franks, N.P.1
-
3
-
-
45549094955
-
Probing the mind: anesthesia and neuroimaging
-
Alkire MT. Probing the mind: anesthesia and neuroimaging. Clin Pharmacol Ther. 2008;1:149–52. DOI: 10.1038/clpt.2008.75
-
(2008)
Clin Pharmacol Ther
, vol.1
, pp. 149-152
-
-
Alkire, M.T.1
-
4
-
-
78049348352
-
Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness
-
• Boveroux P, Vanhaudenhuyse A, Bruno MA, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology. 2010;5:1038–53.
-
(2010)
Anesthesiology
, Issue.5
, pp. 1038-1053
-
-
-
5
-
-
84870612498
-
Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness
-
Lewis LD, Weiner VS, Mukamel EA, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2012;109:E3377–86.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E3377-E3386
-
-
Lewis, L.D.1
Weiner, V.S.2
Mukamel, E.A.3
-
6
-
-
84859372207
-
Returning from oblivion: Imaging the neural core of consciousness
-
•• Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci. 2012;14:4935–43.
-
(2012)
J Neurosci
, Issue.14
, pp. 4935-4943
-
-
Langsjo Jw1
Kaskinoro, A.M.T.K.2
-
7
-
-
0028355035
-
Sleep neurobiology: relevance for mechanistic studies of anaesthesia
-
Lydic R, Biebuyck JF. Sleep neurobiology: relevance for mechanistic studies of anaesthesia. Br J Anaesth. 1994;5:506–8. DOI: 10.1093/bja/72.5.506
-
(1994)
Br J Anaesth
, vol.5
, pp. 506-508
-
-
Lydic, R.1
Biebuyck, J.F.2
-
8
-
-
0033367369
-
Sleep homeostasis and models of sleep regulation
-
Borbely AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999;6:557–68.
-
(1999)
J Biol Rhythms
, vol.6
, pp. 557-568
-
-
Borbely, A.A.1
Achermann, P.2
-
9
-
-
79251643981
-
State-specific effects of sevoflurane anesthesia on sleep homeostasis: Selective recovery of slow wave but not rapid eye movement sleep
-
• Pal D, Lipinski WJ, Walker AJ, et al. State-specific effects of sevoflurane anesthesia on sleep homeostasis: selective recovery of slow wave but not rapid eye movement sleep. Anesthesiology. 2011;2:302–10.
-
(2011)
Anesthesiology
, vol.2
, pp. 302-310
-
-
Pal, D.1
Lipinski, W.J.2
Walker, A.J.3
-
10
-
-
80053358341
-
Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics
-
Pick J, Chen Y, Moore JT, et al. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics. Anesthesiology. 2011;4:702–12. DOI: 10.1097/ALN.0b013e31822ddd72
-
(2011)
Anesthesiology
, vol.4
, pp. 702-712
-
-
Pick, J.1
Chen, Y.2
Moore, J.T.3
-
11
-
-
2542492937
-
Recovery from sleep deprivation occurs during propofol anesthesia
-
Tung A, Bergmann BM, Herrera S, et al. Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology. 2004;6:1419–26. DOI: 10.1097/00000542-200406000-00014
-
(2004)
Anesthesiology
, vol.6
, pp. 1419-1426
-
-
Tung, A.1
Bergmann, B.M.2
Herrera, S.3
-
12
-
-
0035040667
-
Prolonged sedation with propofol in the rat does not result in sleep deprivation
-
Tung A, Lynch JP, Mendelson WB. Prolonged sedation with propofol in the rat does not result in sleep deprivation. Anesth Analg. 2001;5:1232–6. DOI: 10.1097/00000539-200105000-00028
-
(2001)
Anesth Analg
, vol.5
, pp. 1232-1236
-
-
Tung, A.1
Lynch, J.P.2
Mendelson, W.B.3
-
13
-
-
78649877847
-
Effects of anesthesia on the response to sleep deprivation
-
Nelson AB, Faraguna U, Tononi G, et al. Effects of anesthesia on the response to sleep deprivation. Sleep. 2010;12:1659–67.
-
(2010)
Sleep
, vol.12
, pp. 1659-1667
-
-
Nelson, A.B.1
Faraguna, U.2
Tononi, G.3
-
14
-
-
79953663984
-
Propofol anesthesia and sleep: a high-density EEG study
-
Murphy M, Bruno MA, Riedner BA, et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;3:283–91.
-
(2011)
Sleep
, vol.3
, pp. 283-291
-
-
Murphy, M.1
Bruno, M.A.2
Riedner, B.A.3
-
15
-
-
77951700387
-
Isoflurane anesthesia does not satisfy the homeostatic need for rapid eye movement sleep
-
Mashour GA, Lipinski WJ, Matlen LB, et al. Isoflurane anesthesia does not satisfy the homeostatic need for rapid eye movement sleep. Anesth Analg. 2010;5:1283–9. DOI: 10.1213/ANE.0b013e3181d3e861
-
(2010)
Anesth Analg
, vol.5
, pp. 1283-1289
-
-
Mashour, G.A.1
Lipinski, W.J.2
Matlen, L.B.3
-
16
-
-
0036792294
-
Sleep deprivation potentiates the onset and duration of loss of righting reflex induced by propofol and isoflurane
-
Tung A, Szafran MJ, Bluhm B, et al. Sleep deprivation potentiates the onset and duration of loss of righting reflex induced by propofol and isoflurane. Anesthesiology. 2002;4:906–11. DOI: 10.1097/00000542-200210000-00024
-
(2002)
Anesthesiology
, vol.4
, pp. 906-911
-
-
Tung, A.1
Szafran, M.J.2
Bluhm, B.3
-
17
-
-
77952938154
-
Neurobiology of sleep
-
Lu BS, Zee PC. Neurobiology of sleep. Clin Chest Med. 2010;2:309–18. DOI: 10.1016/j.ccm.2010.02.004
-
(2010)
Clin Chest Med
, vol.2
, pp. 309-318
-
-
Lu, B.S.1
Zee, P.C.2
-
18
-
-
78650230533
-
Sleep state switching
-
Saper CB, Fuller PM, Pedersen NP, et al. Sleep state switching. Neuron. 2010;6:1023–42. DOI: 10.1016/j.neuron.2010.11.032
-
(2010)
Neuron
, vol.6
, pp. 1023-1042
-
-
Saper, C.B.1
Fuller, P.M.2
Pedersen, N.P.3
-
19
-
-
70449406919
-
The neurobiology of sleep
-
Siegel JM. The neurobiology of sleep. Semin Neurol. 2009;4:277–96. DOI: 10.1055/s-0029-1237118
-
(2009)
Semin Neurol
, vol.4
, pp. 277-296
-
-
Siegel, J.M.1
-
20
-
-
4644369747
-
Paradoxical REM sleep promoting and permitting neuronal networks
-
Jones BE. Paradoxical REM sleep promoting and permitting neuronal networks. Arch Ital Biol. 2004;4:379–96.
-
(2004)
Arch Ital Biol
, vol.4
, pp. 379-396
-
-
Jones, B.E.1
-
22
-
-
0025943413
-
Release of acetylcholine and GABA, and activity of their synthesizing enzymes in the rat pontine reticular formation
-
Camacho-Arroyo I, Alvarado R, Tapia R. Release of acetylcholine and GABA, and activity of their synthesizing enzymes in the rat pontine reticular formation. Neurochem Res. 1991;8:837–41. DOI: 10.1007/BF00965530
-
(1991)
Neurochem Res
, vol.8
, pp. 837-841
-
-
Camacho-Arroyo, I.1
Alvarado, R.2
Tapia, R.3
-
23
-
-
43749110731
-
Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness
-
Watson CJ, Soto-Calderon H, Lydic R, et al. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep. 2008;4:453–64.
-
(2008)
Sleep
, vol.4
, pp. 453-464
-
-
Watson, C.J.1
Soto-Calderon, H.2
Lydic, R.3
-
24
-
-
77956856103
-
Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness
-
Brevig HN, Watson CJ, Lydic R, et al. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness. Sleep. 2010;10:1285–93.
-
(2010)
Sleep
, vol.10
, pp. 1285-1293
-
-
Brevig, H.N.1
Watson, C.J.2
Lydic, R.3
-
25
-
-
79960556583
-
Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation
-
Watson CJ, Lydic R, Baghdoyan HA. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J Neurochem. 2011;4:571–80. DOI: 10.1111/j.1471-4159.2011.07350.x
-
(2011)
J Neurochem
, vol.4
, pp. 571-580
-
-
Watson, C.J.1
Lydic, R.2
Baghdoyan, H.A.3
-
26
-
-
0031866121
-
Enhancement of rapid eye movement sleep in the rat by cholinergic and adenosinergic agonists infused into the pontine reticular formation
-
Marks GA, Birabil CG. Enhancement of rapid eye movement sleep in the rat by cholinergic and adenosinergic agonists infused into the pontine reticular formation. Neuroscience. 1998;1:29–37. DOI: 10.1016/S0306-4522(98)00005-0
-
(1998)
Neuroscience
, vol.1
, pp. 29-37
-
-
Marks, G.A.1
Birabil, C.G.2
-
27
-
-
33644789510
-
Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep
-
Coleman CG, Baghdoyan HA, Lydic R. Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem. 2006;6:1750–9. DOI: 10.1111/j.1471-4159.2006.03700.x
-
(2006)
J Neurochem
, vol.6
, pp. 1750-1759
-
-
Coleman, C.G.1
Baghdoyan, H.A.2
Lydic, R.3
-
28
-
-
79951848552
-
Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep
-
Vanini G, Wathen BL, Lydic R, et al. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci. 2011;7:2649–56. DOI: 10.1523/JNEUROSCI.5674-10.2011
-
(2011)
J Neurosci
, vol.7
, pp. 2649-2656
-
-
Vanini, G.1
Wathen, B.L.2
Lydic, R.3
-
29
-
-
51449091381
-
Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system
-
Marks GA, Sachs OW, Birabil CG. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system. Neuroscience. 2008;1:1–10. DOI: 10.1016/j.neuroscience.2008.06.067
-
(2008)
Neuroscience
, vol.1
, pp. 1-10
-
-
Marks, G.A.1
Sachs, O.W.2
Birabil, C.G.3
-
30
-
-
0032823362
-
Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism
-
Xi MC, Morales FR, Chase MH. Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol. 1999;4:2015–9.
-
(1999)
J Neurophysiol
, vol.4
, pp. 2015-2019
-
-
Xi, M.C.1
Morales, F.R.2
Chase, M.H.3
-
31
-
-
0041315465
-
GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats
-
Sanford LD, Tang X, Xiao J, et al. GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats. J Neurophysiol. 2003;2:938–45. DOI: 10.1152/jn.00993.2002
-
(2003)
J Neurophysiol
, vol.2
, pp. 938-945
-
-
Sanford, L.D.1
Tang, X.2
Xiao, J.3
-
32
-
-
77956825924
-
GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness
-
• Flint RR, Chang T, Lydic R, et al. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness. J Neurosci. 2010;37:12301–9.
-
(2010)
J Neurosci
, Issue.37
, pp. 12301-12309
-
-
-
33
-
-
58149292202
-
Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia
-
Vanini G, Watson CJ, Lydic R, et al. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology. 2008;6:978–88. DOI: 10.1097/ALN.0b013e31818e3b1b
-
(2008)
Anesthesiology
, vol.6
, pp. 978-988
-
-
Vanini, G.1
Watson, C.J.2
Lydic, R.3
-
34
-
-
45549108533
-
Noradrenergic modulation of arousal
-
Berridge CW. Noradrenergic modulation of arousal. Brain Res Rev. 2008;1:1–17. DOI: 10.1016/j.brainresrev.2007.10.013
-
(2008)
Brain Res Rev
, vol.1
, pp. 1-17
-
-
Berridge, C.W.1
-
35
-
-
0019855733
-
Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle
-
Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981;8:876–86.
-
(1981)
J Neurosci
, vol.8
, pp. 876-886
-
-
Aston-Jones, G.1
Bloom, F.E.2
-
36
-
-
78649381832
-
Tuning arousal with optogenetic modulation of locus coeruleus neurons
-
• Carter ME, Yizhar O, Chikahisa S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;12:1526–33.
-
(2010)
Nat Neurosci
, Issue.12
, pp. 1526-1533
-
-
-
37
-
-
84866852784
-
Mechanism for Hypocretin-mediated sleep-to-wake transitions
-
Carter ME, Brill J, Bonnavion P, et al. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA. 2012;39:E2635–44. DOI: 10.1073/pnas.1202526109
-
(2012)
Proc Natl Acad Sci USA
, vol.39
, pp. E2635-E2644
-
-
Carter, M.E.1
Brill, J.2
Bonnavion, P.3
-
38
-
-
85027958353
-
Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine beta-hydroxylase knockout mice
-
Hu FY, Hanna GM, Han W, et al. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine beta-hydroxylase knockout mice. Anesthesiology. 2012;5:1006–17. DOI: 10.1097/ALN.0b013e3182700ab9
-
(2012)
Anesthesiology
, vol.5
, pp. 1006-1017
-
-
Hu, F.Y.1
Hanna, G.M.2
Han, W.3
-
39
-
-
77955613374
-
A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia
-
Friedman EB, Sun Y, Moore JT, et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS ONE. 2010;7:e11903. DOI: 10.1371/journal.pone.0011903
-
(2010)
PLoS ONE
, vol.7
-
-
Friedman, E.B.1
Sun, Y.2
Moore, J.T.3
-
40
-
-
81855183846
-
Role of coerulean noradrenergic neurones in general anaesthesia in rats
-
Kushikata T, Yoshida H, Kudo M, et al. Role of coerulean noradrenergic neurones in general anaesthesia in rats. Br J Anaesth. 2011;6:924–9. DOI: 10.1093/bja/aer303
-
(2011)
Br J Anaesth
, vol.6
, pp. 924-929
-
-
Kushikata, T.1
Yoshida, H.2
Kudo, M.3
-
41
-
-
0037313063
-
The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects
-
Nelson LE, Lu J, Guo T, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;2:428–36. DOI: 10.1097/00000542-200302000-00024
-
(2003)
Anesthesiology
, vol.2
, pp. 428-436
-
-
Nelson, L.E.1
Lu, J.2
Guo, T.3
-
42
-
-
60849097577
-
The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse
-
Zecharia AY, Nelson LE, Gent TC, et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci. 2009;7:2177–87. DOI: 10.1523/JNEUROSCI.4997-08.2009
-
(2009)
J Neurosci
, vol.7
, pp. 2177-2187
-
-
Zecharia, A.Y.1
Nelson, L.E.2
Gent, T.C.3
-
43
-
-
70350454933
-
Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents
-
Gompf H, Chen J, Sun Y, et al. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology. 2009;5:1001–9. DOI: 10.1097/ALN.0b013e3181b764b3
-
(2009)
Anesthesiology
, vol.5
, pp. 1001-1009
-
-
Gompf, H.1
Chen, J.2
Sun, Y.3
-
44
-
-
66049126873
-
Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells
-
Gilsbach R, Roser C, Beetz N, et al. Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol Pharmacol. 2009;5:1160–70. DOI: 10.1124/mol.109.054544
-
(2009)
Mol Pharmacol
, vol.5
, pp. 1160-1170
-
-
Gilsbach, R.1
Roser, C.2
Beetz, N.3
-
45
-
-
85027942398
-
Noradrenergic trespass in anesthetic and sedative states
-
Sanders RD, Maze M. Noradrenergic trespass in anesthetic and sedative states. Anesthesiology. 2012;5:945–7. DOI: 10.1097/ALN.0b013e3182700c93
-
(2012)
Anesthesiology
, vol.5
, pp. 945-947
-
-
Sanders, R.D.1
Maze, M.2
-
46
-
-
80053365605
-
Methylphenidate actively induces emergence from general anesthesia
-
Solt K, Cotten JF, Cimenser A, et al. Methylphenidate actively induces emergence from general anesthesia. Anesthesiology. 2011;4:791–803. DOI: 10.1097/ALN.0b013e31822e92e5
-
(2011)
Anesthesiology
, vol.4
, pp. 791-803
-
-
Solt, K.1
Cotten, J.F.2
Cimenser, A.3
-
47
-
-
84860757206
-
Active emergence from propofol general anesthesia is induced by methylphenidate
-
Chemali JJ, Van Dort CJ, Brown EN, et al. Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology. 2012;5:998–1005. DOI: 10.1097/ALN.0b013e3182518bfc
-
(2012)
Anesthesiology
, vol.5
, pp. 998-1005
-
-
Chemali, J.J.1
Van Dort, C.J.2
Brown, E.N.3
-
50
-
-
0025100585
-
Modulating role of dopamine on anesthetic requirements
-
Segal IS, Walton JK, Irwin I, et al. Modulating role of dopamine on anesthetic requirements. Eur J Pharmacol. 1990;1:9–15. DOI: 10.1016/0014-2999(90)94055-3
-
(1990)
Eur J Pharmacol
, vol.1
, pp. 9-15
-
-
Segal, I.S.1
Walton, J.K.2
Irwin, I.3
-
51
-
-
0032563681
-
Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats
-
Szymusiak R, Alam N, Steininger TL, et al. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res. 1998;1–2:178–88. DOI: 10.1016/S0006-8993(98)00631-3
-
(1998)
Brain Res
, vol.1-2
, pp. 178-188
-
-
Szymusiak, R.1
Alam, N.2
Steininger, T.L.3
-
52
-
-
0029671044
-
Activation of ventrolateral preoptic neurons during sleep
-
Sherin JE, Shiromani PJ, McCarley RW, et al. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;5246:216–9. DOI: 10.1126/science.271.5246.216
-
(1996)
Science
, vol.5246
, pp. 216-219
-
-
Sherin, J.E.1
Shiromani, P.J.2
McCarley, R.W.3
-
53
-
-
0032526450
-
Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat
-
Sherin JE, Elmquist JK, Torrealba F, et al. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci. 1998;12:4705–21.
-
(1998)
J Neurosci
, vol.12
, pp. 4705-4721
-
-
Sherin, J.E.1
Elmquist, J.K.2
Torrealba, F.3
-
54
-
-
0024603246
-
Histamine-immunoreactive nerve fibers in the rat brain
-
Panula P, Pirvola U, Auvinen S, et al. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience. 1989;3:585–610. DOI: 10.1016/0306-4522(89)90007-9
-
(1989)
Neuroscience
, vol.3
, pp. 585-610
-
-
Panula, P.1
Pirvola, U.2
Auvinen, S.3
-
55
-
-
33749517735
-
Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse
-
Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006;40:10292–8. DOI: 10.1523/JNEUROSCI.2341-06.2006
-
(2006)
J Neurosci
, vol.40
, pp. 10292-10298
-
-
Takahashi, K.1
Lin, J.S.2
Sakai, K.3
-
56
-
-
0036785886
-
The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway
-
Nelson LE, Guo TZ, Lu J, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;10:979–84. DOI: 10.1038/nn913
-
(2002)
Nat Neurosci
, vol.10
, pp. 979-984
-
-
Nelson, L.E.1
Guo, T.Z.2
Lu, J.3
-
57
-
-
43249106443
-
Role of endogenous sleep-wake and analgesic systems in anesthesia
-
Lu J, Nelson LE, Franks N, et al. Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol. 2008;4:648–62. DOI: 10.1002/cne.21685
-
(2008)
J Comp Neurol
, vol.4
, pp. 648-662
-
-
Lu, J.1
Nelson, L.E.2
Franks, N.3
-
58
-
-
73449084084
-
Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus
-
Li KY, Guan YZ, Krnjevic K, et al. Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus. Anesthesiology. 2009;6:1271–8. DOI: 10.1097/ALN.0b013e3181bf1d79
-
(2009)
Anesthesiology
, vol.6
, pp. 1271-1278
-
-
Li, K.Y.1
Guan, Y.Z.2
Krnjevic, K.3
-
59
-
-
84868541589
-
Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis
-
• Moore JT, Chen J, Han B, et al. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol. 2012;22:2008–16.
-
(2012)
Curr Biol
, vol.22
, pp. 2008-2016
-
-
Moore, J.T.1
Chen, J.2
Han, B.3
-
60
-
-
84866406441
-
GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness
-
• Zecharia AY, Yu X, Gotz T, et al. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci. 2012;38:13062–75.
-
(2012)
J Neurosci
, Issue.38
, pp. 13062-13075
-
-
-
61
-
-
0034808423
-
Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital
-
Devor M, Zalkind V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain. 2001;1:101–12. DOI: 10.1016/S0304-3959(01)00345-1
-
(2001)
Pain
, vol.1
, pp. 101-112
-
-
Devor, M.1
Zalkind, V.2
-
62
-
-
81155131308
-
The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia
-
Eikermann M, Vetrivelan R, Grosse-Sundrup M, et al. The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia. Brain Res. 2011;1426:30–7.
-
(2011)
Brain Res
, vol.1426
, pp. 30
-
-
Eikermann, M.1
Vetrivelan, R.2
Grosse-Sundrup, M.3
-
63
-
-
0032402181
-
Neurons containing hypocretin (orexin) project to multiple neuronal systems
-
Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;23:9996–10015.
-
(1998)
J Neurosci
, vol.23
, pp. 9996-10015
-
-
Peyron, C.1
Tighe, D.K.2
van den Pol, A.N.3
-
64
-
-
22244443005
-
Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle
-
Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;28:6716–20. DOI: 10.1523/JNEUROSCI.1887-05.2005
-
(2005)
J Neurosci
, vol.28
, pp. 6716-6720
-
-
Lee, M.G.1
Hassani, O.K.2
Jones, B.E.3
-
65
-
-
19544376694
-
Behavioral correlates of activity in identified hypocretin/orexin neurons
-
Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;5:787–98. DOI: 10.1016/j.neuron.2005.04.035
-
(2005)
Neuron
, vol.5
, pp. 787-798
-
-
Mileykovskiy, B.Y.1
Kiyashchenko, L.I.2
Siegel, J.M.3
-
66
-
-
0033588184
-
Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation
-
Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;4:437–51. DOI: 10.1016/S0092-8674(00)81973-X
-
(1999)
Cell
, vol.4
, pp. 437-451
-
-
Chemelli, R.M.1
Willie, J.T.2
Sinton, C.M.3
-
67
-
-
0034992322
-
Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity
-
Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;2:345–54. DOI: 10.1016/S0896-6273(01)00293-8
-
(2001)
Neuron
, vol.2
, pp. 345-354
-
-
Hara, J.1
Beuckmann, C.T.2
Nambu, T.3
-
68
-
-
39549098333
-
An essential role for orexins in emergence from general anesthesia
-
Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;4:1309–14. DOI: 10.1073/pnas.0707146105
-
(2008)
Proc Natl Acad Sci USA
, vol.4
, pp. 1309-1314
-
-
Kelz, M.B.1
Sun, Y.2
Chen, J.3
-
69
-
-
67349281730
-
Activation of orexin signal in basal forebrain facilitates the emergence from sevoflurane anesthesia in rat
-
Dong H, Niu J, Su B, et al. Activation of orexin signal in basal forebrain facilitates the emergence from sevoflurane anesthesia in rat. Neuropeptides. 2009;3:179–85. DOI: 10.1016/j.npep.2009.04.006
-
(2009)
Neuropeptides
, vol.3
, pp. 179-185
-
-
Dong, H.1
Niu, J.2
Su, B.3
-
70
-
-
79952248679
-
Effects of orexin-A on propofol anesthesia in rats
-
Shirasaka T, Yonaha T, Onizuka S, et al. Effects of orexin-A on propofol anesthesia in rats. J Anesth. 2011;1:65–71. DOI: 10.1007/s00540-010-1071-6
-
(2011)
J Anesth
, vol.1
, pp. 65-71
-
-
Shirasaka, T.1
Yonaha, T.2
Onizuka, S.3
-
71
-
-
84866922347
-
Orexin-a facilitates emergence from propofol anesthesia in the rat
-
Zhang LN, Li ZJ, Tong L, et al. Orexin-a facilitates emergence from propofol anesthesia in the rat. Anesth Analg. 2012;4:789–96. DOI: 10.1213/ANE.0b013e3182645ea3
-
(2012)
Anesth Analg
, vol.4
, pp. 789-796
-
-
Zhang, L.N.1
Li, Z.J.2
Tong, L.3
-
72
-
-
0029146025
-
Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation
-
Szymusiak R. Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep. 1995;6:478–500.
-
(1995)
Sleep
, vol.6
, pp. 478-500
-
-
Szymusiak, R.1
-
73
-
-
84882889150
-
Basic mechanisms of sleep-wake states
-
Kryger MH, Roth T, Dement WC
-
Jones BE, Basic mechanisms of sleep-wake states. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 2005. p. 136–53.
-
(2005)
Principles and Practice of Sleep Medicine
, pp. 136-153
-
-
Jones, B.E.1
-
74
-
-
79952700083
-
Lesion of cholinergic neurons in nucleus basalis enhances response to general anesthetics
-
Leung LS, Petropoulos S, Shen B, et al. Lesion of cholinergic neurons in nucleus basalis enhances response to general anesthetics. Exp Neurol. 2011;2:259–69. DOI: 10.1016/j.expneurol.2011.01.019
-
(2011)
Exp Neurol
, vol.2
, pp. 259-269
-
-
Leung, L.S.1
Petropoulos, S.2
Shen, B.3
-
75
-
-
0022407042
-
The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat
-
Jones BE, Yang TZ. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol. 1985;1:56–92. DOI: 10.1002/cne.902420105
-
(1985)
J Comp Neurol
, vol.1
, pp. 56-92
-
-
Jones, B.E.1
Yang, T.Z.2
-
76
-
-
70349682764
-
Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia
-
Luo T, Leung LS. Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology. 2009;4:725–33. DOI: 10.1097/ALN.0b013e3181b061a0
-
(2009)
Anesthesiology
, vol.4
, pp. 725-733
-
-
Luo, T.1
Leung, L.S.2
-
77
-
-
80053355071
-
Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats
-
Pillay S, Vizuete JA, McCallum JB, et al. Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats. Anesthesiology. 2011;4:733–42. DOI: 10.1097/ALN.0b013e31822c5ee1
-
(2011)
Anesthesiology
, vol.4
, pp. 733-742
-
-
Pillay, S.1
Vizuete, J.A.2
McCallum, J.B.3
-
78
-
-
55149116510
-
The energy hypothesis of sleep revisited
-
Scharf MT, Naidoo N, Zimmerman JE, et al. The energy hypothesis of sleep revisited. Prog Neurobiol. 2008;3:264–80. DOI: 10.1016/j.pneurobio.2008.08.003
-
(2008)
Prog Neurobiol
, vol.3
, pp. 264-280
-
-
Scharf, M.T.1
Naidoo, N.2
Zimmerman, J.E.3
-
79
-
-
0030995841
-
Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness
-
Porkka-Heiskanen T, Strecker RE, Thakkar M, et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;5316:1265–8. DOI: 10.1126/science.276.5316.1265
-
(1997)
Science
, vol.5316
, pp. 1265-1268
-
-
Porkka-Heiskanen, T.1
Strecker, R.E.2
Thakkar, M.3
-
80
-
-
0034674938
-
Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study
-
Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience. 2000;3:507–17. DOI: 10.1016/S0306-4522(00)00220-7
-
(2000)
Neuroscience
, vol.3
, pp. 507-517
-
-
Porkka-Heiskanen, T.1
Strecker, R.E.2
McCarley, R.W.3
-
81
-
-
0032743992
-
Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats
-
Basheer R, Porkka-Heiskanen T, Stenberg D, et al. Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res. 1999;1–2:1–10. DOI: 10.1016/S0169-328X(99)00219-3
-
(1999)
Brain Res Mol Brain Res
, vol.1-2
, pp. 1-10
-
-
Basheer, R.1
Porkka-Heiskanen, T.2
Stenberg, D.3
-
82
-
-
0031007397
-
Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat
-
Portas CM, Thakkar M, Rainnie DG, et al. Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience. 1997;1:225–35. DOI: 10.1016/S0306-4522(96)00640-9
-
(1997)
Neuroscience
, vol.1
, pp. 225-235
-
-
Portas, C.M.1
Thakkar, M.2
Rainnie, D.G.3
-
83
-
-
80053360036
-
Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat
-
Gauthier EA, Guzick SE, Brummett CM, et al. Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat. Anesthesiology. 2011;4:743–53. DOI: 10.1097/ALN.0b013e31822e9f85
-
(2011)
Anesthesiology
, vol.4
, pp. 743-753
-
-
Gauthier, E.A.1
Guzick, S.E.2
Brummett, C.M.3
-
84
-
-
20144365152
-
Sleep, epilepsy and thalamic reticular inhibitory neurons
-
Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci. 2005;6:317–24. DOI: 10.1016/j.tins.2005.03.007
-
(2005)
Trends Neurosci
, vol.6
, pp. 317-324
-
-
Steriade, M.1
-
85
-
-
0142154260
-
Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition
-
Wan X, Mathers DA, Puil E. Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition. Neuroscience. 2003;4:947–58. DOI: 10.1016/j.neuroscience.2003.07.002
-
(2003)
Neuroscience
, vol.4
, pp. 947-958
-
-
Wan, X.1
Mathers, D.A.2
Puil, E.3
-
86
-
-
33644959979
-
Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA(A) receptor chloride channels
-
Ying SW, Goldstein PA. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA(A) receptor chloride channels. Mol Pain. 2005;2.
-
(2005)
Mol Pain
, vol.2
-
-
Ying, S.W.1
Goldstein, P.A.2
-
87
-
-
50049092351
-
Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane
-
Budde T, Coulon P, Pawlowski M, et al. Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane. Pflugers Arch. 2008;6:1061–73. DOI: 10.1007/s00424-008-0482-9
-
(2008)
Pflugers Arch
, vol.6
, pp. 1061-1073
-
-
Budde, T.1
Coulon, P.2
Pawlowski, M.3
-
88
-
-
77954011706
-
Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro
-
Joksovic PM and Todorovic SM. Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro. Ann N Y Acad Sci. 2010;1199:36–42.
-
(2010)
Ann N Y Acad Sci
, vol.1199
, pp. 36-42
-
-
Joksovic, P.M.1
Todorovic, S.M.2
-
89
-
-
58549100304
-
Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms
-
• Ying SW, Werner DF, Homanics GE, et al. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms. Neuropharmacology. 2009;2:438–47.
-
(2009)
Neuropharmacology
, Issue.2
, pp. 438-447
-
-
-
90
-
-
25644453383
-
General anesthesia and the neural correlates of consciousness
-
Alkire MT and Miller J. General anesthesia and the neural correlates of consciousness. Prog Brain Res. 2005;150:229–44.
-
(2005)
Prog Brain Res
, vol.150
, pp. 229-244
-
-
Alkire, M.T.1
Miller, J.2
-
91
-
-
84872367178
-
Cognitive processing during the transition to sleep
-
Goupil L, Bekinschtein T. Cognitive processing during the transition to sleep. Arch Ital Biol. 2012;2–3:140–54.
-
(2012)
Arch Ital Biol
, vol.2-3
, pp. 140-154
-
-
Goupil, L.1
Bekinschtein, T.2
-
92
-
-
58749091109
-
Modeling the GABAergic action of etomidate on the thalamocortical system
-
Talavera JA, Esser SK, Amzica F, et al. Modeling the GABAergic action of etomidate on the thalamocortical system. Anesth Analg. 2009;1:160–7. DOI: 10.1213/ane.0b013e31818d40aa
-
(2009)
Anesth Analg
, vol.1
, pp. 160-167
-
-
Talavera, J.A.1
Esser, S.K.2
Amzica, F.3
-
93
-
-
65549134685
-
Volatile anesthetic action in a computational model of the thalamic reticular nucleus
-
Gottschalk A, Miotke SA. Volatile anesthetic action in a computational model of the thalamic reticular nucleus. Anesthesiology. 2009;5:996–1010. DOI: 10.1097/ALN.0b013e31819db923
-
(2009)
Anesthesiology
, vol.5
, pp. 996-1010
-
-
Gottschalk, A.1
Miotke, S.A.2
-
94
-
-
78651112737
-
Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness
-
Ching S, Cimenser A, Purdon PL, et al. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci USA. 2010;52:22665–70. DOI: 10.1073/pnas.1017069108
-
(2010)
Proc Natl Acad Sci USA
, vol.52
, pp. 22665-22670
-
-
Ching, S.1
Cimenser, A.2
Purdon, P.L.3
-
95
-
-
34547598476
-
Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat
-
Alkire MT, McReynolds JR, Hahn EL, et al. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 2007;2:264–72. DOI: 10.1097/01.anes.0000270741.33766.24
-
(2007)
Anesthesiology
, vol.2
, pp. 264-272
-
-
Alkire, M.T.1
McReynolds, J.R.2
Hahn, E.L.3
-
96
-
-
65349192797
-
Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia
-
Alkire MT, Asher CD, Franciscus AM, et al. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology. 2009;4:766–73. DOI: 10.1097/ALN.0b013e31819c461c
-
(2009)
Anesthesiology
, vol.4
, pp. 766-773
-
-
Alkire, M.T.1
Asher, C.D.2
Franciscus, A.M.3
-
97
-
-
0034106011
-
Rest in Drosophila is a sleep-like state
-
Hendricks JC, Finn SM, Panckeri KA, et al. Rest in Drosophila is a sleep-like state. Neuron. 2000;1:129–38. DOI: 10.1016/S0896-6273(00)80877-6
-
(2000)
Neuron
, vol.1
, pp. 129-138
-
-
Hendricks, J.C.1
Finn, S.M.2
Panckeri, K.A.3
-
98
-
-
38749092606
-
Lethargus is a Caenorhabditis elegans sleep-like state
-
Raizen DM, Zimmerman JE, Maycock MH, et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature. 2008;7178:569–72. DOI: 10.1038/nature06535
-
(2008)
Nature
, vol.7178
, pp. 569-572
-
-
Raizen, D.M.1
Zimmerman, J.E.2
Maycock, M.H.3
-
99
-
-
25844463573
-
Breakdown of cortical effective connectivity during sleep
-
Massimini M, Ferrarelli F, Huber R, et al. Breakdown of cortical effective connectivity during sleep. Science. 2005;5744:2228–32. DOI: 10.1126/science.1117256
-
(2005)
Science
, vol.5744
, pp. 2228-2232
-
-
Massimini, M.1
Ferrarelli, F.2
Huber, R.3
-
100
-
-
77249083662
-
Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness
-
Ferrarelli F, Massimini M, Sarasso S, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA. 2010;6:2681–6. DOI: 10.1073/pnas.0913008107
-
(2010)
Proc Natl Acad Sci USA
, vol.6
, pp. 2681-2686
-
-
Ferrarelli, F.1
Massimini, M.2
Sarasso, S.3
-
101
-
-
84869492490
-
The role of default network deactivation in cognition and disease
-
Anticevic A, Cole MW, Murray JD, et al. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;12:584–92. DOI: 10.1016/j.tics.2012.10.008
-
(2012)
Trends Cogn Sci
, vol.12
, pp. 584-592
-
-
Anticevic, A.1
Cole, M.W.2
Murray, J.D.3
-
102
-
-
67650457363
-
Decoupling of the brain’s default mode network during deep sleep
-
Horovitz SG, Braun AR, Carr WS, et al. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci USA. 2009;27:11376–81. DOI: 10.1073/pnas.0901435106
-
(2009)
Proc Natl Acad Sci USA
, vol.27
, pp. 11376-11381
-
-
Horovitz, S.G.1
Braun, A.R.2
Carr, W.S.3
-
103
-
-
80051757551
-
Development of the brain’s default mode network from wakefulness to slow wave sleep
-
Samann PG, Wehrle R, Hoehn D, et al. Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex. 2011;9:2082–93. DOI: 10.1093/cercor/bhq295
-
(2011)
Cereb Cortex
, vol.9
, pp. 2082-2093
-
-
Samann, P.G.1
Wehrle, R.2
Hoehn, D.3
-
104
-
-
79957923335
-
Brain connectivity in pathological and pharmacological coma
-
Noirhomme Q, Soddu A, Lehembre R, et al. Brain connectivity in pathological and pharmacological coma. Front Syst Neurosci. 2010;160.
-
(2010)
Front Syst Neurosci
, vol.160
-
-
Noirhomme, Q.1
Soddu, A.2
Lehembre, R.3
-
105
-
-
79957762902
-
Tracking brain states under general anesthesia by using global coherence analysis
-
Cimenser A, Purdon PL, Pierce ET, et al. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci USA. 2011;21:8832–7. DOI: 10.1073/pnas.1017041108
-
(2011)
Proc Natl Acad Sci USA
, vol.21
, pp. 8832-8837
-
-
Cimenser, A.1
Purdon, P.L.2
Pierce, E.T.3
-
106
-
-
47249161547
-
Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?
-
Boly M, Phillips C, Tshibanda L, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci. 2008;1129:119–29.
-
(2008)
Ann N Y Acad Sci
, vol.1129
, pp. 119-129
-
-
Boly, M.1
Phillips, C.2
Tshibanda, L.3
-
107
-
-
78049328459
-
Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration
-
Lee U, Oh G, Kim S, et al. Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration. Anesthesiology. 2010;5:1081–91. DOI: 10.1097/ALN.0b013e3181f229b5
-
(2010)
Anesthesiology
, vol.5
, pp. 1081-1091
-
-
Lee, U.1
Oh, G.2
Kim, S.3
-
108
-
-
23844558150
-
Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat
-
Imas OA, Ropella KM, Ward BD, et al. Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci Lett. 2005;3:145–50. DOI: 10.1016/j.neulet.2005.06.018
-
(2005)
Neurosci Lett
, vol.3
, pp. 145-150
-
-
Imas, O.A.1
Ropella, K.M.2
Ward, B.D.3
-
109
-
-
80053589292
-
Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients
-
•• Ku SW, Lee U, Noh GJ, et al. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS ONE. 2011;10:e25155.
-
(2011)
Plos ONE
, Issue.10
-
-
Swlee, •.•.K.1
Noh, U.G.J.2
-
110
-
-
70349121163
-
The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans
-
Lee U, Kim S, Noh GJ, et al. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn. 2009;4:1069–78. DOI: 10.1016/j.concog.2009.04.004
-
(2009)
Conscious Cogn
, vol.4
, pp. 1069-1078
-
-
Lee, U.1
Kim, S.2
Noh, G.J.3
-
111
-
-
84861140603
-
Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness
-
Boly M, Moran R, Murphy M, et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci. 2012;20:7082–90. DOI: 10.1523/JNEUROSCI.3769-11.2012
-
(2012)
J Neurosci
, vol.20
, pp. 7082-7090
-
-
Boly, M.1
Moran, R.2
Murphy, M.3
|