메뉴 건너뛰기




Volumn , Issue , 2006, Pages 1-302

Introduction to Genomic Signal Processing with Control

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85129451008     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Book
Times cited : (42)

References (137)
  • 4
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decisions and the quantitative analysis of cdna microarray images
    • Chen, Y., Dougherty, E. R., and Bittner, M. L. Ratio-based decisions and the quantitative analysis of cdna microarray images. Journal Of Biomedical Optics, 2:364-374, 1997.
    • (1997) Journal Of Biomedical Optics , vol.2 , pp. 364-374
    • Chen, Y.1    Dougherty, E.R.2    Bittner, M.L.3
  • 6
    • 0034302007 scopus 로고    scopus 로고
    • Coefficient of determination in nonlinear signal processing
    • Dougherty, E., Kim, S., and Chen, Y. Coefficient of determination in nonlinear signal processing. Signal Process., 80:2219-2235, 2000.
    • (2000) Signal Process , vol.80 , pp. 2219-2235
    • Dougherty, E.1    Kim, S.2    Chen, Y.3
  • 12
    • 0000884487 scopus 로고    scopus 로고
    • Experimental design for gene expression microarrays
    • Kerr, M. K. and Churchill, G. Experimental design for gene expression microarrays. Biostatistics, 2:183-201, 2001.
    • (2001) Biostatistics , vol.2 , pp. 183-201
    • Kerr, M.K.1    Churchill, G.2
  • 14
    • 0035841226 scopus 로고    scopus 로고
    • A statistical method for flagging weak spots improves normalization and ratio estimates in microarrays
    • Yang, M. C. K., Ruan, Q. G., Yang, J. J., Eckenrode, S., Wu, S., Mcln-doe, R. A., and She, J. X. A statistical method for flagging weak spots improves normalization and ratio estimates in microarrays. Physiological Genomics, 7:45-53, 2001.
    • (2001) Physiological Genomics , vol.7 , pp. 45-53
    • Yang, M.C.K.1    Ruan, Q.G.2    Yang, J.J.3    Eckenrode, S.4    Wu, S.5    Mcln-doe, R.A.6    She, J.X.7
  • 15
    • 0036740360 scopus 로고    scopus 로고
    • Ratio statistics of gene expression levels and applications to microarray data analysis
    • Chen, Y., Kamat, V., Dougherty, E. R., Bittner, M. L., Meltzer, P. S., and Trent, J. M. Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics, 18:1207-1215, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1207-1215
    • Chen, Y.1    Kamat, V.2    Dougherty, E.R.3    Bittner, M.L.4    Meltzer, P.S.5    Trent, J.M.6
  • 18
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Tu, Y., Stolovitzky, G., and Klein, U. Quantitative noise analysis for gene expression microarray experiments. Proc Natl Acad Sci USA, 99:14031-14036, 2002.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 14031-14036
    • Tu, Y.1    Stolovitzky, G.2    Klein, U.3
  • 19
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush, J. Microarray data normalization and transformation. Nature Genetics, 32:496-501, 2002.
    • (2002) Nature Genetics , vol.32 , pp. 496-501
    • Quackenbush, J.1
  • 22
    • 0035875553 scopus 로고    scopus 로고
    • Issues in cdna microarray analysis: Quality filtering, channel normalization, models of variations and assessment of gene effects
    • Tseng, G. C., Oh, M.K., Rohlin, L., Liao, J., and Wong, W.H. Issues in cdna microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res., 29:2549-2557, 2001.
    • (2001) Nucleic Acids Res , vol.29 , pp. 2549-2557
    • Tseng, G.C.1    Oh, M.K.2    Rohlin, L.3    Liao, J.4    Wong, W.H.5
  • 26
    • 0035793042 scopus 로고    scopus 로고
    • Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection
    • Li, C. and Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA, 98:31-36, 2001.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 31-36
    • Li, C.1    Wong, W.H.2
  • 27
    • 0034913250 scopus 로고    scopus 로고
    • Multiplex sequencing by hybridization
    • Hubbell, E. Multiplex sequencing by hybridization. Journal of Computational Biology, 8:141-149, 2001.
    • (2001) Journal of Computational Biology , vol.8 , pp. 141-149
    • Hubbell, E.1
  • 29
    • 0142121516 scopus 로고    scopus 로고
    • Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    • Irizarry, R. A. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4:249-264, 2003.
    • (2003) Biostatistics , vol.4 , pp. 249-264
    • Irizarry, R.A.1
  • 32
    • 0035076190 scopus 로고    scopus 로고
    • Small sample issues for microarray-based classification
    • Dougherty, E. R. Small sample issues for microarray-based classification. Comparative and Functional Genomics, 2:28-34, 2001.
    • (2001) Comparative and Functional Genomics , vol.2 , pp. 28-34
    • Dougherty, E.R.1
  • 35
    • 0000388992 scopus 로고
    • Nonparametric regression and its applications (with discussion)
    • Stone, C. Nonparametric regression and its applications (with discussion). Ann. Statist., 5:595-645, 1977.
    • (1977) Ann. Statist , vol.5 , pp. 595-645
    • Stone, C.1
  • 36
    • 0017724537 scopus 로고
    • Discriminant functions when covari-ances are unequal and sample sizes moderate
    • Wald, P. W. and Kronmal, R. A. Discriminant functions when covari-ances are unequal and sample sizes moderate. Biometrics, 33:479-484, 1977.
    • (1977) Biometrics , vol.33 , pp. 479-484
    • Wald, P.W.1    Kronmal, R.A.2
  • 38
    • 0001632008 scopus 로고
    • General structure of regularization procedures in image reconstruction
    • Titterington, D. M. General structure of regularization procedures in image reconstruction. Astron. Astrophys., 144:381-387, 1985.
    • (1985) Astron. Astrophys , vol.144 , pp. 381-387
    • Titterington, D.M.1
  • 39
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman, J. H. Regularized discriminant analysis. J. Amer. Statist. Assoc., 84:165-175, 1989.
    • (1989) J. Amer. Statist. Assoc , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 41
    • 0027042070 scopus 로고
    • Skeletal growth of a spongiose radiolarian dictyocoryre truncatum in laboratory culture
    • Matsuoka, A. Skeletal growth of a spongiose radiolarian dictyocoryre truncatum in laboratory culture. Marine Micropaleontology, 19:287-297, 1992.
    • (1992) Marine Micropaleontology , vol.19 , pp. 287-297
    • Matsuoka, A.1
  • 45
    • 33746610159 scopus 로고    scopus 로고
    • Noise-injected neural networks show promise for use on small-sample expression data
    • Hua, J., Lowey, J., Xiong, Z., and Dougherty, E. R. Noise-injected neural networks show promise for use on small-sample expression data. BMC Bioinformatics, 7:274-287, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 274-287
    • Hua, J.1    Lowey, J.2    Xiong, Z.3    Dougherty, E.R.4
  • 47
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G. F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Information Theory, 14:55-63, 1968.
    • (1968) IEEE Trans. Information Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 48
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • Krishnaiah, P. R., Kanal, L. N
    • Jain, A. and Chandrasekaran, B. Dimensionality and sample size considerations in pattern recognition practice. Handbook ofStatistics, 2:835-855, 1982. in Krishnaiah, P. R., Kanal, L. N., eds.
    • (1982) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.1    Chandrasekaran, B.2
  • 51
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil, P., Novovicova, J., and Kittler, J. Floating search methods in feature selection. Pattern Recog. Lett., 15:1119-1125, 1994.
    • (1994) Pattern Recog. Lett , vol.15 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 52
    • 16344388210 scopus 로고    scopus 로고
    • Superior feature-set ranking for small samples using bolstered error estimation
    • Sima, C., Braga-Neto, U., and Dougherty, E. R. Superior feature-set ranking for small samples using bolstered error estimation. Bioinfor-matics, 21:1046-1054, 2005.
    • (2005) Bioinfor-matics , vol.21 , pp. 1046-1054
    • Sima, C.1    Braga-Neto, U.2    Dougherty, E.R.3
  • 53
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection-evaluation, application, and small sample performance
    • Jain, A. and Zongker, D. Feature selection-evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Machine Intell., 19:153-158, 1997.
    • (1997) IEEE Trans. Pattern Anal. Machine Intell., , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 54
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo, M. and Sklansky, J. Comparison of algorithms that select features for pattern classifiers. Pattern Recog., 33:25-41, 2000.
    • (2000) Pattern Recog , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 55
    • 10044276174 scopus 로고    scopus 로고
    • Determination of the optimal number of features for quadratic discriminant analysis via the normal approximation to the discriminant distribution
    • Hua, J., Xiong, Z., and Dougherty, E. Determination of the optimal number of features for quadratic discriminant analysis via the normal approximation to the discriminant distribution. Pattern Recog., 38:403-421, 2004.
    • (2004) Pattern Recog , vol.38 , pp. 403-421
    • Hua, J.1    Xiong, Z.2    Dougherty, E.3
  • 60
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at jackknife
    • Efron, B. Bootstrap methods: another look at jackknife. Ann. Statist., 7:1-26, 1979.
    • (1979) Ann. Statist , vol.7 , pp. 1-26
    • Efron, B.1
  • 61
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvements on cross-validation
    • Efron, B. Estimating the error rate of a prediction rule: Improvements on cross-validation. Journal of the American Statistical Association, 78:316-331, 1983.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 65
    • 24044535745 scopus 로고    scopus 로고
    • Exact performance measures and distributions of error estimators for discrete classifiers
    • Braga-Neto, U. and Dougherty, E. R. Exact performance measures and distributions of error estimators for discrete classifiers. Pattern Recognition, 38:1799-1814, 2005.
    • (2005) Pattern Recognition , vol.38 , pp. 1799-1814
    • Braga-Neto, U.1    Dougherty, E.R.2
  • 66
    • 33344464798 scopus 로고    scopus 로고
    • Epistemology of computational biology: Mathematical models and experimental prediction as the basis of their validity
    • Dougherty, E. R. and Braga-Neto, U. Epistemology of computational biology: Mathematical models and experimental prediction as the basis of their validity. Journal of Biological Systems, 14:65-90, 2006.
    • (2006) Journal of Biological Systems , vol.14 , pp. 65-90
    • Dougherty, E.R.1    Braga-Neto, U.2
  • 67
    • 1842854600 scopus 로고    scopus 로고
    • A probabilistic theory of clustering
    • Dougherty, E. R. and Brun, M. A probabilistic theory of clustering. Pattern Recognition, 37:917-925, 2004.
    • (2004) Pattern Recognition , vol.37 , pp. 917-925
    • Dougherty, E.R.1    Brun, M.2
  • 68
    • 0020068152 scopus 로고
    • Self organized formation of topologically correct feature maps
    • Kohonen, T. Self organized formation of topologically correct feature maps. Cybernetics, 43:59-69, 1982.
    • (1982) Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 70
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the som algorithm
    • Cottrell, M., Fort, J. C., and Pages, G. Theoretical aspects of the som algorithm. Neurocomputing, 21:119-138, 1998.
    • (1998) Neurocomputing , vol.21 , pp. 119-138
    • Cottrell, M.1    Fort, J.C.2    Pages, G.3
  • 71
    • 0013426686 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • Flexer, A. On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5:373-384, 2001.
    • (2001) Intelligent Data Analysis , vol.5 , pp. 373-384
    • Flexer, A.1
  • 72
    • 0037229674 scopus 로고    scopus 로고
    • Mi-croarray reveals differences in both tumors and vascular specific gene expression in de novo cd5+ and cd5-diffuse large b-cell lymphomas
    • Kobayashi, T., Yamaguchi, M., Kim, S., Morikawa, J., Ueno, S., Suh, E., Dougherty, E. R., Shmulevich, I., Shiku, H., and Zhang., W. Mi-croarray reveals differences in both tumors and vascular specific gene expression in de novo cd5+ and cd5-diffuse large b-cell lymphomas. Cancer Research, 63:60-66, 2003.
    • (2003) Cancer Research , vol.63 , pp. 60-66
    • Kobayashi, T.1    Yamaguchi, M.2    Kim, S.3    Morikawa, J.4    Ueno, S.5    Suh, E.6    Dougherty, E.R.7    Shmulevich, I.8    Shiku, H.9    Zhang, W.10
  • 75
    • 84950632109 scopus 로고
    • Ob jective criteria for the evaluation of clustering methods
    • Rand, W. M. Ob jective criteria for the evaluation of clustering methods. Journal ofthe American Statistical Association, 66:846-850, 1971.
    • (1971) Journal ofthe American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 76
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • Milligan, G. W. and Cooper, M. C. A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21:441-458, 1986.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 78
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • Dunn, J. C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybernetics, 3:32-57, 1973.
    • (1973) J. Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 81
    • 0035905782 scopus 로고    scopus 로고
    • Modelling cellular behaviour
    • Endy, D. and Brent, R. Modelling cellular behaviour. Nature, 409:391-395, 2001.
    • (2001) Nature , vol.409 , pp. 391-395
    • Endy, D.1    Brent, R.2
  • 83
    • 0035319006 scopus 로고    scopus 로고
    • Computational studies of gene regulatory networks: In numero molecular biology
    • Hasty, J., McMillen, D., Issacs, F., and Collins, J. J. Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet., 2:268-279, 2001.
    • (2001) Nat. Rev. Genet , vol.2 , pp. 268-279
    • Hasty, J.1    McMillen, D.2    Issacs, F.3    Collins, J.J.4
  • 84
    • 0036094708 scopus 로고    scopus 로고
    • Transcription factors and neoplasia: Vistas in novel drug design
    • Karamouzis, M., Gorgoulis, V., and Papavassiliou, A. Transcription factors and neoplasia: vistas in novel drug design. Clin Cancer Res., 8:949-961, 2002.
    • (2002) Clin Cancer Res , vol.8 , pp. 949-961
    • Karamouzis, M.1    Gorgoulis, V.2    Papavassiliou, A.3
  • 85
    • 0032556443 scopus 로고    scopus 로고
    • On the relationship between ge-nomic regulatory element organization and gene regulatory dynamics
    • Wolf, D. M. and Eckman, F. H. On the relationship between ge-nomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol, 195:167-186, 1998.
    • (1998) J. Theor. Biol , vol.195 , pp. 167-186
    • Wolf, D.M.1    Eckman, F.H.2
  • 87
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic bayesian networks
    • (Technical Report, Computer Science Division, University of California, Berkeley, CA)
    • Murphy, K. and Mian, S. Modelling gene expression data using dynamic bayesian networks, 1999. (Technical Report, Computer Science Division, University of California, Berkeley, CA).
    • (1999) Murphy, K. and Mian, S
  • 91
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • Wahde, M. and Hertz, J. Coarse-grained reverse engineering of genetic regulatory networks. BioSystems, 55:129-136, 2000.
    • (2000) BioSystems , vol.55 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 92
    • 0028844979 scopus 로고
    • A mathematical framework for describing and analysing gene regulatory networks
    • Mestl, T., Plahte, E., and Omholt, S. W. A mathematical framework for describing and analysing gene regulatory networks. J Theor Biol., 176:291-300, 1995.
    • (1995) J Theor Biol , vol.176 , pp. 291-300
    • Mestl, T.1    Plahte, E.2    Omholt, S.W.3
  • 93
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • De Jong, H. Modeling and simulation of genetic regulatory systems: A literature review. Journal ofComputational Biology, 9:67-103, 2001.
    • (2001) Journal ofComputational Biology , vol.9 , pp. 67-103
    • de Jong, H.1
  • 94
    • 1942487792 scopus 로고    scopus 로고
    • A nonlinear discrete dynamical model for transcriptional regulation: Construction and properties
    • Goutsias, J. and Kim, S. A nonlinear discrete dynamical model for transcriptional regulation: Construction and properties. Biophys. J., 86:1922-1945, 2004.
    • (2004) Biophys. J , vol.86 , pp. 1922-1945
    • Goutsias, J.1    Kim, S.2
  • 96
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman, S. Metabolic stability and epigenesis in randomly constructed genetic nets. Theor. Biol., 22:437-467, 1969.
    • (1969) Theor. Biol , vol.22 , pp. 437-467
    • Kauffman, S.1
  • 97
    • 0014671878 scopus 로고
    • Homeostasis and differentiation in random genetic control networks
    • Kauffman, S. Homeostasis and differentiation in random genetic control networks. Nature, 224:177-178, 1969.
    • (1969) Nature , vol.224 , pp. 177-178
    • Kauffman, S.1
  • 98
    • 0015609281 scopus 로고
    • The logical analysis of continuous, nonlinear biochemical control networks
    • Glass, L. and Kauffman, S. The logical analysis of continuous, nonlinear biochemical control networks. Journal of Theoretical Biology, 39:103-129, 1973.
    • (1973) Journal of Theoretical Biology , vol.39 , pp. 103-129
    • Glass, L.1    Kauffman, S.2
  • 99
    • 0035999984 scopus 로고    scopus 로고
    • Binary analysis and optimization-based normalization of gene expression data
    • Shmulevich, I. and Zhang, W. Binary analysis and optimization-based normalization of gene expression data. Bioinformatics, 18:555-565, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 555-565
    • Shmulevich, I.1    Zhang, W.2
  • 100
    • 1542463515 scopus 로고    scopus 로고
    • Binarization of microarray data based on a mixture model
    • Zhou, X., Wang, X., and Dougherty, E. R. Binarization of microarray data based on a mixture model. Molecular Cancer Therapeutics, 2:679-684, 2003.
    • (2003) Molecular Cancer Therapeutics , vol.2 , pp. 679-684
    • Zhou, X.1    Wang, X.2    Dougherty, E.R.3
  • 101
    • 17444405987 scopus 로고    scopus 로고
    • Boolean relationships among genes responsive to ionizing radiation in the nci 60 acds
    • Pal, R., Datta, A., Fornace, A., Bittner, M., and Dougherty, E. Boolean relationships among genes responsive to ionizing radiation in the nci 60 acds. Bioinformatics, 21:1542-1549, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1542-1549
    • Pal, R.1    Datta, A.2    Fornace, A.3    Bittner, M.4    Dougherty, E.5
  • 104
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18:261-274, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 106
    • 0032809387 scopus 로고    scopus 로고
    • Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery
    • Huang, S. Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery. Molec. Med., 77:469-480, 1999.
    • (1999) Molec. Med , vol.77 , pp. 469-480
    • Huang, S.1
  • 108
    • 0345983657 scopus 로고    scopus 로고
    • From boolean to probabilistic boolean networks as models of genetic regulatory networks
    • Shmulevich, I., Dougherty, E. R., and Zhang, W. From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proceedings ofIEEE, 90:1778-1792, 2002.
    • (2002) Proceedings ofIEEE , vol.90 , pp. 1778-1792
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 109
    • 24344481300 scopus 로고    scopus 로고
    • Steady-state probabilities for attractors in probabilistic boolean networks
    • Brun, M., Dougherty, E. R., and Shmulevich, I. Steady-state probabilities for attractors in probabilistic boolean networks. Signal Processing, 85:1993-2013, 2005.
    • (2005) Signal Processing , vol.85 , pp. 1993-2013
    • Brun, M.1    Dougherty, E.R.2    Shmulevich, I.3
  • 110
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the boolean network model
    • Lahdesmaki, H., Shmulevich, I., and Yli-Harja, O. On learning gene regulatory networks under the boolean network model. Machine Learning, 52:147-167, 2003.
    • (2003) Machine Learning , vol.52 , pp. 147-167
    • Lahdesmaki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 111
    • 12244294063 scopus 로고    scopus 로고
    • Construction of genomic networks using mutual-information clustering and reversible-jump markov-chain-monte-carlo predictor design
    • Zhou, X., Wang, X., and Dougherty, E. R. Construction of genomic networks using mutual-information clustering and reversible-jump markov-chain-monte-carlo predictor design. Signal Processing, 83:745-761, 2003.
    • (2003) Signal Processing , vol.83 , pp. 745-761
    • Zhou, X.1    Wang, X.2    Dougherty, E.R.3
  • 116
    • 10244239406 scopus 로고    scopus 로고
    • A bayesian connectivity-based approach to constructing probabilistic gene regulatory networks
    • Zhou, X., Wang, X., Pal, R., Ivanov, I., Bittner, M. L., and Dougherty, E. R. A bayesian connectivity-based approach to constructing probabilistic gene regulatory networks. Bioinformatics, 20:2918-2927, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2918-2927
    • Zhou, X.1    Wang, X.2    Pal, R.3    Ivanov, I.4    Bittner, M.L.5    Dougherty, E.R.6
  • 118
    • 27744569877 scopus 로고    scopus 로고
    • Generating boolean networks with a prescribed attractor structure
    • Pal, R., Ivanov, I., Datta, A., Bittner, M. L., and Dougherty, E. R. Generating boolean networks with a prescribed attractor structure. Bioin-formatics, 21:4021-4025, 2005.
    • (2005) Bioin-formatics , vol.21 , pp. 4021-4025
    • Pal, R.1    Ivanov, I.2    Datta, A.3    Bittner, M.L.4    Dougherty, E.R.5
  • 119
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Peer, D., Regev, A., Elidan, G., and Friedman, N. Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17:215-224, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 215-224
    • Peer, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 120
    • 0348136789 scopus 로고    scopus 로고
    • Reverse engineering of genetic networks with bayesian networks
    • Husmeier, D. Reverse engineering of genetic networks with bayesian networks. Biochem. Soc. Trans., 31:1516-1518, 2003.
    • (2003) Biochem. Soc. Trans , vol.31 , pp. 1516-1518
    • Husmeier, D.1
  • 125
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic boolean networks
    • Shmulevich, I., Dougherty, E. R., and Zhang, W. Gene perturbation and intervention in probabilistic boolean networks. Bioinformatics, 18:1319-1331, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1319-1331
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 126
    • 0347164904 scopus 로고    scopus 로고
    • Control of stationary behaviour in probabilistic boolean networks by means of structural intervention
    • Shmulevich, I., Dougherty, E. R., and Zhang, W. Control of stationary behaviour in probabilistic boolean networks by means of structural intervention. Biological Systems, 10:431-446, 2002.
    • (2002) Biological Systems , vol.10 , pp. 431-446
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 130
    • 2342444140 scopus 로고    scopus 로고
    • External control in markovian genetic regulatory networks: The imperfect information case
    • Datta, A., Choudhary, A., Bittner, M. L., and Dougherty, E. R. External control in markovian genetic regulatory networks: The imperfect information case. Bioinformatics, 20:924-930, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 924-930
    • Datta, A.1    Choudhary, A.2    Bittner, M.L.3    Dougherty, E.R.4
  • 131
    • 16344368806 scopus 로고    scopus 로고
    • Intervention in context-sensitive probabilistic boolean networks
    • Pal, R., Datta, A., Bittner, M. L., and Dougherty, E. R. Intervention in context-sensitive probabilistic boolean networks. Bioinformatics, 21:1211-1218, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1211-1218
    • Pal, R.1    Datta, A.2    Bittner, M.L.3    Dougherty, E.R.4
  • 133
    • 33744466566 scopus 로고    scopus 로고
    • Optimal infinite horizon control for probabilistic boolean networks
    • Pal, R., Datta, A., and Dougherty, E. R. Optimal infinite horizon control for probabilistic boolean networks. IEEE Transactions on Signal Processing, 54:2375-2387, 2006.
    • (2006) IEEE Transactions on Signal Processing , vol.54 , pp. 2375-2387
    • Pal, R.1    Datta, A.2    Dougherty, E.R.3
  • 136
    • 0015658957 scopus 로고
    • Optimal control of partially observable markov processes over a finite horizon
    • Smallwood, R. D. and Sondik, E. J. Optimal control of partially observable markov processes over a finite horizon. Operations Research, 21:1071-1088, 1973.
    • (1973) Operations Research , vol.21 , pp. 1071-1088
    • Smallwood, R.D.1    Sondik, E.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.