메뉴 건너뛰기




Volumn 83, Issue 4, 2003, Pages 745-761

Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design

Author keywords

Clustering; Coefficient of determination; Gene microarray; Gene regulatory network; Markov chain Monte Carlo technique; Mutual information; Probabilistic Boolean network; Simulated annealing

Indexed keywords

BOOLEAN ALGEBRA; COMPUTATIONAL METHODS; COMPUTER SIMULATION; INFORMATION ANALYSIS; MARKOV PROCESSES; MONTE CARLO METHODS;

EID: 12244294063     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0165-1684(02)00469-3     Document Type: Article
Times cited : (66)

References (46)
  • 2
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under Boolean network model
    • Hawaii
    • T. Akutsu, S. Miyano, S. Kuhara, Identification of genetic networks from a small number of gene expression patterns under Boolean network model, Pacific Symposium on Biocomputing, Vol. 4, Hawaii, 1999, pp. 17-28.
    • (1999) Pacific Symposium on Biocomputing , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 3
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • Akutsu T., Miyano S., Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics. 16:2000;727-743.
    • (2000) Bioinformatics , vol.16 , pp. 727-743
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 4
    • 0006470452 scopus 로고    scopus 로고
    • Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress response
    • Amundson S.A., Bittner M.L., Chen Y., Trent J.M., Meltzer P., Fornace A.J. Fluorescent. cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress response Oncogene. 18:1999;3666-3672.
    • (1999) Oncogene , vol.18 , pp. 3666-3672
    • Amundson, S.A.1    Bittner, M.L.2    Chen, Y.3    Trent, J.M.4    Meltzer, P.5    Fornace, A.J.6
  • 6
    • 0032728081 scopus 로고    scopus 로고
    • Clustering gene expression patterns
    • Ben-Dor A., Shamir R., Yakhini Z. Clustering gene expression patterns. Comput. Biol. 6(3/4):1999;281-297.
    • (1999) Comput. Biol. , vol.6 , Issue.3-4 , pp. 281-297
    • Ben-Dor, A.1    Shamir, R.2    Yakhini, Z.3
  • 8
    • 0000552986 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Hawaii
    • A.J. Butte, I.S. Hohane, Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements, Pacific Symposium on Biocomputing, Vol. 4, Hawaii, 2000.
    • (2000) Pacific Symposium on Biocomputing , vol.4
    • Butte, A.J.1    Hohane, I.S.2
  • 9
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decisions and the quantitative analysis of cDNA microarray images
    • Chen Y., Dougherty E.R., Bittner M. Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Opt. 2(4):1997;364-374.
    • (1997) J. Biomed. Opt. , vol.2 , Issue.4 , pp. 364-374
    • Chen, Y.1    Dougherty, E.R.2    Bittner, M.3
  • 10
    • 0032668662 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from experimental data
    • T. Chen, V. Filkov, S. Skiena, Identifying gene regulatory networks from experimental data, in: Proceedings of the RECOMB, 1999, pp. 94-103.
    • (1999) Proceedings of the RECOMB , pp. 94-103
    • Chen, T.1    Filkov, V.2    Skiena, S.3
  • 12
    • 0032837252 scopus 로고    scopus 로고
    • Computational methods for the identification of differential and coordinated gene expression
    • Claverie J.M. Computational methods for the identification of differential and coordinated gene expression. Hum. Mol. Genetics. 8(10):1998;1821-1832.
    • (1998) Hum. Mol. Genetics , vol.8 , Issue.10 , pp. 1821-1832
    • Claverie, J.M.1
  • 14
    • 84984934048 scopus 로고    scopus 로고
    • DNA microarrays in drug discovery and development
    • Debouck C., Goodfellow P.N. DNA microarrays in drug discovery and development. Nat. Genet. 21(1):1999;48-50.
    • (1999) Nat. Genet. , vol.21 , Issue.1 , pp. 48-50
    • Debouck, C.1    Goodfellow, P.N.2
  • 15
    • 0035076190 scopus 로고    scopus 로고
    • Small sample issues for microarray-based classification
    • Dougherty E.R. Small sample issues for microarray-based classification. Comp. Functional Genomics. 2:2001;28-34.
    • (2001) Comp. Functional Genomics , vol.2 , pp. 28-34
    • Dougherty, E.R.1
  • 18
    • 0034302007 scopus 로고    scopus 로고
    • Coefficient of determination in nonlinear signal processing
    • Dougherty E.R., Kim S., Chen Y. Coefficient of determination in nonlinear signal processing. Signal Processing. 80(10):2000;2219-2235.
    • (2000) Signal Processing , vol.80 , Issue.10 , pp. 2219-2235
    • Dougherty, E.R.1    Kim, S.2    Chen, Y.3
  • 22
    • 0015609281 scopus 로고
    • The logical analysis of continuous, non-linear biochemical networks
    • Glass A.J., Kauffman S.A. The logical analysis of continuous, non-linear biochemical networks. J. Theor. Biol. 39:1973;103-129.
    • (1973) J. Theor. Biol. , vol.39 , pp. 103-129
    • Glass, A.J.1    Kauffman, S.A.2
  • 23
    • 0029829031 scopus 로고    scopus 로고
    • Up-regulation and functional role of p21 Wal/Cip 1 during grouth arrest of human breast carcinoma MCF-7 cells by phenylacetate
    • Gorospe M., Shack S., Guyton K.Z., Samid D., Holbrook N.J. Up-regulation and functional role of. p21 Wal/Cip 1 during grouth arrest of human breast carcinoma MCF-7 cells by phenylacetate Cell Grouth Differ. 7:1996;1609-1615.
    • (1996) Cell Grouth Differ , vol.7 , pp. 1609-1615
    • Gorospe, M.1    Shack, S.2    Guyton, K.Z.3    Samid, D.4    Holbrook, N.J.5
  • 24
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika. 82:1995;711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 25
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'Haeseleer P., Liang P., Fuhrman S., Somogyi R. Genetic network inference. from co-expression clustering to reverse engineering Bioinformatics. 16(8):2000;707-726.
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 707-726
    • D'Haeseleer, P.1    Liang, P.2    Fuhrman, S.3    Somogyi, R.4
  • 27
    • 0000698766 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, R.A. Young, Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks, Pacific Symposium on Biocomputing, Vol. 6, 2001, pp. 23-32.
    • (2001) Pacific Symposium on Biocomputing , vol.6 , pp. 23-32
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 28
    • 0035319006 scopus 로고    scopus 로고
    • Computational studies of gene regulatory networks: In numero molecular biology
    • Hasty J., McMillen D., Isaacs F., Collins J.J. Computational studies of gene regulatory networks. in numero molecular biology Nat. Reviewers Genet. 2:2001;268-279.
    • (2001) Nat. Reviewers Genet. , vol.2 , pp. 268-279
    • Hasty, J.1    McMillen, D.2    Isaacs, F.3    Collins, J.J.4
  • 29
    • 0032729435 scopus 로고    scopus 로고
    • Exploying expression data: Identification and analysis of coexpressed genes
    • Heyer L.J., Kruglyak S., Yooseph S. Exploying expression data. identification and analysis of coexpressed genes Genome Res. 9:1999;1106-1115.
    • (1999) Genome Res. , vol.9 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 30
    • 0033640675 scopus 로고    scopus 로고
    • Bayesian wavelet network for nonparametric regression
    • Holmes C.C., Mallick B.K. Bayesian wavelet network for nonparametric regression. IEEE Trans. Neural Networks. 11(1):2000;27-35.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.1 , pp. 27-35
    • Holmes, C.C.1    Mallick, B.K.2
  • 31
    • 0032809387 scopus 로고    scopus 로고
    • Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis drug biology
    • Huang S. Gene expression profiling, genetic networks, and cellular states. an integrating concept for tumorigenesis drug biology J. Mol. Med. 77:1999;469-480.
    • (1999) J. Mol. Med. , vol.77 , pp. 469-480
    • Huang, S.1
  • 32
    • 44049112575 scopus 로고
    • Genetic algorithms and very fast simulated reannealing: A comparison
    • Ingber L., Rosen B. Genetic algorithms and very fast simulated reannealing. a comparison Math. Comput. Modelling. 16(16):1992;87-100.
    • (1992) Math. Comput. Modelling , vol.16 , Issue.16 , pp. 87-100
    • Ingber, L.1    Rosen, B.2
  • 34
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22:1969;437-467.
    • (1969) J. Theor. Biol. , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 36
    • 0034287393 scopus 로고    scopus 로고
    • General nonlinear framework for the analysis of gene interaction via multivariate expression arrays
    • Kim S., Dougherty E.R., Bittner M.L., Chen Y., Sivakumar K., Meltzer P., Trent J.M. General nonlinear framework for the analysis of gene interaction via multivariate expression arrays. J. Biomed. Opt. 5(4):2000;411-424.
    • (2000) J. Biomed. Opt. , vol.5 , Issue.4 , pp. 411-424
    • Kim, S.1    Dougherty, E.R.2    Bittner, M.L.3    Chen, Y.4    Sivakumar, K.5    Meltzer, P.6    Trent, J.M.7
  • 38
    • 0028844979 scopus 로고
    • A mathematical framework for describing and analysing gene regulatory networks
    • Mestl T., Plahte E., Omholt S.W. A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol. 176(2):1995;291-300.
    • (1995) J. Theor. Biol. , vol.176 , Issue.2 , pp. 291-300
    • Mestl, T.1    Plahte, E.2    Omholt, S.W.3
  • 39
    • 0034684814 scopus 로고    scopus 로고
    • Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S
    • cerevisiae
    • E.J. Moler, D.C. Radisky, I.S. Mian, Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae, Physiol. Genomics 4 (2000) 127-135.
    • (2000) Physiol. Genomics , vol.4 , pp. 127-135
    • Moler, E.J.1    Radisky, D.C.2    Mian, I.S.3
  • 41
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I., Dougherty E.R., Kim S., Zhang W. Probabilistic Boolean networks. a rule-based uncertainty model for gene regulatory networks Bioinformatics. 18(1):2002.
    • (2002) Bioinformatics , vol.18 , Issue.1
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 43
    • 0033725197 scopus 로고    scopus 로고
    • Mathematical modeling of gene networks
    • Smolen P., Baxter D., Byrne J. Mathematical modeling of gene networks. Neuron. 26:2000;567-580.
    • (2000) Neuron , vol.26 , pp. 567-580
    • Smolen, P.1    Baxter, D.2    Byrne, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.