메뉴 건너뛰기




Volumn , Issue , 2005, Pages 289-333

Prognostic factor studies

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85123816329     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (29)

References (165)
  • 1
    • 0026417610 scopus 로고
    • Breast cancer prognostic factors: Evaluation guidelines
    • McGuire WL. Breast cancer prognostic factors: evaluation guidelines. J Natl Cancer Inst 1991;83:154-155.
    • (1991) J Natl Cancer Inst , vol.83 , pp. 154-155
    • McGuire, W.L.1
  • 2
    • 0024322357 scopus 로고
    • A framework for evaluating and conducting prognostic studies: An application to cirrhosis of the liver
    • Infante-Rivard C, Villeneuve J-P, Esnaola S. A framework for evaluating and conducting prognostic studies: an application to cirrhosis of the liver. J Clin Epidemiol 1989;42:791-805.
    • (1989) J Clin Epidemiol , vol.42 , pp. 791-805
    • Infante-Rivard, C.1    Villeneuve, J.-P.2    Esnaola, S.3
  • 3
    • 4444245041 scopus 로고
    • Prognostic factor integration. Special issue
    • Clark GM, ed. Prognostic factor integration. Special issue. Breast Cancer Res Treat 1992;22:185-293.
    • (1992) Breast Cancer Res Treat , vol.22 , pp. 185-293
    • Clark, G.M.1
  • 4
    • 0028318390 scopus 로고
    • Statistical aspects of prognostic factor studies in oncology
    • Simon R, Altman DG. Statistical aspects of prognostic factor studies in oncology. Br J Cancer 1994;69:979-985.
    • (1994) Br J Cancer , vol.69 , pp. 979-985
    • Simon, R.1    Altman, D.G.2
  • 5
    • 0032445262 scopus 로고    scopus 로고
    • Methodological challenges in the evaluation of prognostic factors in breast cancer
    • Altman DG, Lyman GH. Methodological challenges in the evaluation of prognostic factors in breast cancer. Breast Cancer Res Treat 1998;52:289-303.
    • (1998) Breast Cancer Res Treat , vol.52 , pp. 289-303
    • Altman, D.G.1    Lyman, G.H.2
  • 6
    • 84971357232 scopus 로고
    • Prognostic models: Clinically useful or quickly forgotten? Commentary
    • Wyatt JC, Altman DG. Prognostic models: clinically useful or quickly forgotten? Commentary. BMJ 1995;311:1539-1541.
    • (1995) BMJ , vol.311 , pp. 1539-1541
    • Wyatt, J.C.1    Altman, D.G.2
  • 7
    • 0015990146 scopus 로고
    • Statistical methods for the identification and use of prognostic factors
    • Armitage P, Gehan EA. Statistical methods for the identification and use of prognostic factors. Int J Cancer 1974;13:16-36.
    • (1974) Int J Cancer , vol.13 , pp. 16-36
    • Armitage, P.1    Gehan, E.A.2
  • 8
    • 0002801745 scopus 로고
    • Analysis of survival data: Cox and Weibull models with covariates
    • Mike V, Stanley KE, eds. New York: Wiley
    • Byar DP. Analysis of survival data: Cox and Weibull models with covariates. In: Mike V, Stanley KE, eds. Statistics in Medical Research. New York: Wiley, 1982:365-401.
    • (1982) Statistics in Medical Research , pp. 365-401
    • Byar, D.P.1
  • 9
    • 0002033917 scopus 로고
    • Identification of prognostic factors
    • Buyse ME, Staquet MJ, Sylvester RJ, eds. Oxford: Oxford University Press
    • Byar DP. Identification of prognostic factors. In: Buyse ME, Staquet MJ, Sylvester RJ, eds. Cancer Clinical Trials: Methods and Practice. Oxford: Oxford University Press, 1984:423-143.
    • (1984) Cancer Clinical Trials: Methods and Practice , pp. 423-143
    • Byar, D.P.1
  • 10
    • 0342917968 scopus 로고
    • Use of regression models: Statistical aspects
    • Buyse ME, Staquet MJ, Sylvester RJ, eds. Oxford: Oxford University Press
    • Simon R. Use of regression models: statistical aspects. In: Buyse ME, Staquet MJ, Sylvester RJ, eds. Cancer Clinical Trials: Methods and Practice. Oxford: Oxford University Press, 1984:444-466.
    • (1984) Cancer Clinical Trials: Methods and Practice , pp. 444-466
    • Simon, R.1
  • 11
    • 0023791035 scopus 로고
    • Identification and assessment of prognostic factors
    • George SL. Identification and assessment of prognostic factors. Semin Oncol 1988; 5:462-471.
    • (1988) Semin Oncol , vol.5 , pp. 462-471
    • George, S.L.1
  • 19
    • 0038485778 scopus 로고    scopus 로고
    • Reporting of prognostic markers: Current problems and development of guidelines for evidence based practice in the future
    • Riley RD, Abrams KR, Sutton AJ, Lambert PC et al. Reporting of prognostic markers: current problems and development of guidelines for evidence based practice in the future. Br J Cancer 2003;88:1191-1198.
    • (2003) Br J Cancer , vol.88 , pp. 1191-1198
    • Riley, R.D.1    Abrams, K.R.2    Sutton, A.J.3    Lambert, P.C.4
  • 20
    • 84948759549 scopus 로고    scopus 로고
    • Systematic reviews of studies of prognostic variables
    • Egger M, Davey S, Altman D eds. London: BHY Publ. group
    • Altman DG. Systematic reviews of studies of prognostic variables. In: Egger M, Davey S, Altman D eds. Systematic Reviews in Health Care: Meta Analysis in Context. London: BHY Publ. group 2001:228-247.
    • (2001) Systematic Reviews in Health Care: Meta Analysis in Context , pp. 228-247
    • Altman, D.G.1
  • 29
    • 0027362788 scopus 로고
    • Criteria for prognostic factors and for an enhanced prognostic system
    • Burke HB, Henson DE. Criteria for prognostic factors and for an enhanced prognostic system. Cancer 1993;72:3131-3135.
    • (1993) Cancer , vol.72 , pp. 3131-3135
    • Burke, H.B.1    Henson, D.E.2
  • 30
    • 0026548533 scopus 로고
    • Future directions for the American Joint Committee on Cancer
    • Henson DE. Future directions for the American Joint Committee on Cancer. Cancer 1992;69:1639-1644.
    • (1992) Cancer , vol.69 , pp. 1639-1644
    • Henson, D.E.1
  • 31
    • 0026668490 scopus 로고
    • The future of prognostic factors in outcome prediction for patients with cancer
    • Fielding LP, Fenoglio-Preiser CM, Freedman LS. The future of prognostic factors in outcome prediction for patients with cancer. Cancer 1992;70:2367-2377.
    • (1992) Cancer , vol.70 , pp. 2367-2377
    • Fielding, L.P.1    Fenoglio-Preiser, C.M.2    Freedman, L.S.3
  • 32
    • 0027477364 scopus 로고
    • Multiple prognostic factors and outcome analysis in patients with cancer
    • Fielding LP, Henson DE. Multiple prognostic factors and outcome analysis in patients with cancer. Cancer 1993;71:2426-2429.
    • (1993) Cancer , vol.71 , pp. 2426-2429
    • Fielding, L.P.1    Henson, D.E.2
  • 34
    • 0020358354 scopus 로고
    • Patients subsets and variation in therapeutic efficacy
    • Simon R. Patients subsets and variation in therapeutic efficacy. Br J Cancer 1982; 14:473-482.
    • (1982) Br J Cancer , vol.14 , pp. 473-482
    • Simon, R.1
  • 35
    • 0022072706 scopus 로고
    • Testing for qualitative interactions between treatment effects and patient subsets
    • Gail M, Simon R. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 1985;41:361-372.
    • (1985) Biometrics , vol.41 , pp. 361-372
    • Gail, M.1    Simon, R.2
  • 36
    • 0022256862 scopus 로고
    • Assessing apparent treatment covariate interactions in randomized clinical trials
    • Byar DP. Assessing apparent treatment covariate interactions in randomized clinical trials. Stat Med 1985;4:255-263.
    • (1985) Stat Med , vol.4 , pp. 255-263
    • Byar, D.P.1
  • 37
    • 0027731147 scopus 로고
    • Comparison of the Cox model and the regression tree procedure in analyzing a randomized clinical trial
    • Schmoor C, Ulm K, Schumacher M. Comparison of the Cox model and the regression tree procedure in analyzing a randomized clinical trial. Stat Med 1993; 12:2351-2366.
    • (1993) Stat Med , vol.12 , pp. 2351-2366
    • Schmoor, C.1    Ulm, K.2    Schumacher, M.3
  • 38
    • 4344621625 scopus 로고    scopus 로고
    • A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials
    • Royston P, Sauerbrei W. A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials. Stat Med 2004;23:2509-2525.
    • (2004) Stat Med , vol.23 , pp. 2509-2525
    • Royston, P.1    Sauerbrei, W.2
  • 39
    • 70449185514 scopus 로고
    • Histological grading and prognosis in primary breast cancer
    • Bloom HJG, Richardson WW. Histological grading and prognosis in primary breast cancer. Br J Cancer 1957;2:359-377.
    • (1957) Br J Cancer , vol.2 , pp. 359-377
    • Bloom, H.J.G.1    Richardson, W.W.2
  • 42
    • 0030045447 scopus 로고    scopus 로고
    • Randomized and non-randomized patients in clinical trials: Experiences with comprehensive cohort studies
    • Schmoor C, Olschewski M, Schumacher M. Randomized and non-randomized patients in clinical trials: experiences with comprehensive cohort studies. Stat Med 1996;15:263-271.
    • (1996) Stat Med , vol.15 , pp. 263-271
    • Schmoor, C.1    Olschewski, M.2    Schumacher, M.3
  • 43
    • 0000336139 scopus 로고
    • Regression models and life tables (with discussion)
    • Cox DR. Regression models and life tables (with discussion). J R Stat Soc, Ser. B 1972;34:187-220.
    • (1972) J R Stat Soc, Ser. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 45
    • 0026576048 scopus 로고
    • Maximally selected rank statistics
    • Lausen B, Schumacher M. Maximally selected rank statistics. Biometrics 1992; 48:73-85.
    • (1992) Biometrics , vol.48 , pp. 73-85
    • Lausen, B.1    Schumacher, M.2
  • 46
    • 0030057525 scopus 로고    scopus 로고
    • Practical P-value adjustment for optimally selected cutpoints
    • Hilsenbeck SG, Clark GM. Practical P-value adjustment for optimally selected cutpoints. Stat Med 1996; 15:103-112.
    • (1996) Stat Med , vol.15 , pp. 103-112
    • Hilsenbeck, S.G.1    Clark, G.M.2
  • 47
    • 0000368646 scopus 로고
    • An improved Bonferroni inequality and applications
    • Worsley KJ. An improved Bonferroni inequality and applications. Biometrika 1982; 69:297-302.
    • (1982) Biometrika , vol.69 , pp. 297-302
    • Worsley, K.J.1
  • 48
    • 0001935431 scopus 로고
    • Classification and regression trees (CART) used for the exploration of prognostic factors measured on different scales
    • Dirschedl P, Ostermann R, eds. Heidelberg: Physica-Verlag
    • Lausen B, Sauerbrei W, Schumacher M. Classification and regression trees (CART) used for the exploration of prognostic factors measured on different scales. In: Dirschedl P, Ostermann R, eds. Computational Statistics. Heidelberg: Physica-Verlag, 1994:1483-1496.
    • (1994) Computational Statistics , pp. 1483-1496
    • Lausen, B.1    Sauerbrei, W.2    Schumacher, M.3
  • 49
    • 0030110581 scopus 로고    scopus 로고
    • Evaluating the effect of optimized cutoff values in the assessment of prognostic factors
    • Lausen B, Schumacher M. Evaluating the effect of optimized cutoff values in the assessment of prognostic factors. Comput Stat Data Analyis 1996; 21:307-326.
    • (1996) Comput Stat Data Analyis , vol.21 , pp. 307-326
    • Lausen, B.1    Schumacher, M.2
  • 50
    • 0038457682 scopus 로고    scopus 로고
    • On the exact distribution of maximally selected rank statistics
    • Analyis
    • Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Comput Stat Data Analyis 2003; 121-137.
    • (2003) Comput Stat Data , pp. 121-137
    • Hothorn, T.1    Lausen, B.2
  • 51
    • 0027765563 scopus 로고
    • Cross-validation in survival analysis
    • Verweij P, Van Houwelingen HC. Cross-validation in survival analysis. Stat Med 1993;12:2305-2314.
    • (1993) Stat Med , vol.12 , pp. 2305-2314
    • Verweij, P.1    Van Houwelingen, H.C.2
  • 52
    • 1842289823 scopus 로고    scopus 로고
    • Resampling and cross-validation techniques: A tool to reduce bias caused by model building
    • Schumacher M, Holländer N, Sauerbrei W. Resampling and cross-validation techniques: a tool to reduce bias caused by model building. Stat Med 1997; 16:2813-2827.
    • (1997) Stat Med , vol.16 , pp. 2813-2827
    • Schumacher, M.1    Holländer, N.2    Sauerbrei, W.3
  • 53
    • 0025151933 scopus 로고
    • Predictive value of statistical models
    • Van Houwelingen HC, Le Cessie S. Predictive value of statistical models. Stat Med 1990;9:1303-1325.
    • (1990) Stat Med , vol.9 , pp. 1303-1325
    • Van Houwelingen, H.C.1    Le Cessie, S.2
  • 54
    • 2942689368 scopus 로고    scopus 로고
    • Confidence intervals for the effect of a prognostic factor after selection of an "optimal" cutpoint
    • Holländer N, Sauerbrei W, Schumacher M. Confidence intervals for the effect of a prognostic factor after selection of an "optimal" cutpoint. Stat Med 2004; 23:1701-1713.
    • (2004) Stat Med , vol.23 , pp. 1701-1713
    • Holländer, N.1    Sauerbrei, W.2    Schumacher, M.3
  • 55
    • 0026353784 scopus 로고
    • Survival analysis 1982-1991: The second decade of the proportional hazards regression model
    • Andersen PK. Survival analysis 1982-1991: the second decade of the proportional hazards regression model. Stat Med 1991;10:1931-1941.
    • (1991) Stat Med , vol.10 , pp. 1931-1941
    • Andersen, P.K.1
  • 56
    • 0033426505 scopus 로고    scopus 로고
    • The use of resampling methods to simplify regression models in medical statistics
    • Sauerbrei W. The use of resampling methods to simplify regression models in medical statistics. Appl Stat 1999;48:313-329.
    • (1999) Appl Stat , vol.48 , pp. 313-329
    • Sauerbrei, W.1
  • 58
    • 0001281382 scopus 로고
    • Model selection criteria and model selection tests in regression models
    • Teräsvirta T, Mellin I. Model selection criteria and model selection tests in regression models. Scand J Stat 1986;13:159-171.
    • (1986) Scand J Stat , vol.13 , pp. 159-171
    • Teräsvirta, T.1    Mellin, I.2
  • 59
    • 84950942444 scopus 로고
    • Why stepdown procedures in variable selection?
    • Mantel N. Why stepdown procedures in variable selection? Technometrics 1970;12:621-625.
    • (1970) Technometrics , vol.12 , pp. 621-625
    • Mantel, N.1
  • 60
    • 0043001264 scopus 로고
    • Comparison of variable selection procedures in regression models: A simulation study and practical examples
    • Michaelis J, Hommel G, Wellek S, eds. MMV: München
    • Sauerbrei W. Comparison of variable selection procedures in regression models: a simulation study and practical examples. In: Michaelis J, Hommel G, Wellek S, eds. Europäische Perspektiven der Medizinischen Informatik, Biometrie und Epidemiologie. MMV: München, 1993:108-113.
    • (1993) Europäische Perspektiven der Medizinischen Informatik, Biometrie und Epidemiologie , pp. 108-113
    • Sauerbrei, W.1
  • 61
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 62
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion)
    • Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Appl Stat 1994;43:429-467.
    • (1994) Appl Stat , vol.43 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 63
    • 25144498163 scopus 로고    scopus 로고
    • Estimating the functional form of a continuous covari-ate's effect on survival time
    • press
    • Holländer N, Schumacher M. Estimating the functional form of a continuous covari-ate's effect on survival time. Comput Stat Data Anal 2005; in press.
    • (2005) Comput Stat Data Anal
    • Holländer, N.1    Schumacher, M.2
  • 64
    • 0033474286 scopus 로고    scopus 로고
    • Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials
    • Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. J R Stat Soc, Ser. A, 1999;162:71-94.
    • (1999) J R Stat Soc, Ser. A , vol.162 , pp. 71-94
    • Sauerbrei, W.1    Royston, P.2
  • 65
    • 0033067540 scopus 로고    scopus 로고
    • Modelling the effects of standard prognostic factors in node positive breast cancer
    • Sauerbrei W, Royston P, Bojar H, Schmoor C, Schumacher M and the German Breast Cancer Study Group (GBSG). Modelling the effects of standard prognostic factors in node positive breast cancer. Br J Cancer 1999; 79:1752-1760.
    • (1999) Br J Cancer , vol.79 , pp. 1752-1760
    • Sauerbrei, W.1    Royston, P.2    Bojar, H.3    Schmoor, C.4    Schumacher, M.5
  • 67
    • 0030475522 scopus 로고    scopus 로고
    • Evaluation of long-term survival: Use of diagnostics and robust estimators with Cox's proportional hazards model
    • Valsecchi MG, Silvestri D. Evaluation of long-term survival: use of diagnostics and robust estimators with Cox's proportional hazards model. Stat Med 1996; 15:2763-2780.
    • (1996) Stat Med , vol.15 , pp. 2763-2780
    • Valsecchi, M.G.1    Silvestri, D.2
  • 68
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15:361-387.
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 70
    • 0021958612 scopus 로고
    • The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model
    • Chen CH, George SL. The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model. Stat Med 1985;4:39-46.
    • (1985) Stat Med , vol.4 , pp. 39-46
    • Chen, C.H.1    George, S.L.2
  • 71
    • 0024320123 scopus 로고
    • Bootstrap investigation of the stability of a Cox regression model
    • Altman DG, Andersen PK. Bootstrap investigation of the stability of a Cox regression model. Stat Med 1989;8:771-783.
    • (1989) Stat Med , vol.8 , pp. 771-783
    • Altman, D.G.1    Andersen, P.K.2
  • 72
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: Application to the Cox regression model
    • Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Stat Med 1992; 11:2093-2109.
    • (1992) Stat Med , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 73
    • 0037470273 scopus 로고    scopus 로고
    • Stability of multivariable fractional polynomial models with selection of variables and transformations: A bootstrap investigation
    • Royston P, Sauerbrei W. Stability of multivariable fractional polynomial models with selection of variables and transformations: a bootstrap investigation. Stat Med, 2003; 22:639-659.
    • (2003) Stat Med , vol.22 , pp. 639-659
    • Royston, P.1    Sauerbrei, W.2
  • 75
    • 0002836753 scopus 로고    scopus 로고
    • Tree-structured statistical methods
    • Armitage P, Colton T, eds. Chichester: Wiley
    • Zhang H, Crowley J, Sox HC, Olshen R. Tree-structured statistical methods. In: Armitage P, Colton T, eds. Encyclopedia of Biostatistics. Chichester: Wiley, 1998:4561-4573.
    • (1998) Encyclopedia of Biostatistics , pp. 4561-4573
    • Zhang, H.1    Crowley, J.2    Sox, H.C.3    Olshen, R.4
  • 76
    • 0021875130 scopus 로고
    • Tree-structured survival analysis
    • Gordon L, Olshen R. Tree-structured survival analysis. Can Treatm Rep 1985;69:1065-1069.
    • (1985) Can Treatm Rep , vol.69 , pp. 1065-1069
    • Gordon, L.1    Olshen, R.2
  • 77
    • 0026770594 scopus 로고
    • Relative risk regression trees for censored survival data
    • LeBlanc M, Crowley J. Relative risk regression trees for censored survival data. Biometrics 1992;48:411-425.
    • (1992) Biometrics , vol.48 , pp. 411-425
    • LeBlanc, M.1    Crowley, J.2
  • 78
    • 84940925951 scopus 로고
    • Survival trees by goodness of split
    • LeBlanc M, Crowley J. Survival trees by goodness of split. JASA 1993; 88:457-467.
    • (1993) JASA , vol.88 , pp. 457-467
    • LeBlanc, M.1    Crowley, J.2
  • 79
    • 0023942063 scopus 로고
    • Regression trees for censored data
    • Segal MR. Regression trees for censored data. Biometrics 1988; 44:35-47.
    • (1988) Biometrics , vol.44 , pp. 35-47
    • Segal, M.R.1
  • 80
    • 85123815145 scopus 로고    scopus 로고
    • Tree-structured survival analysis in medical research
    • Everitt BS, Dunn G, eds. London: Arnold
    • Segal MR. Tree-structured survival analysis in medical research. In: Everitt BS, Dunn G, eds. Statistical Analysis of Medical Data: New Developments. London: Arnold, 1998:101-125.
    • (1998) Statistical Analysis of Medical Data: New Developments , pp. 101-125
    • Segal, M.R.1
  • 81
    • 8944242308 scopus 로고
    • Tree-growing for the multivariate model: The RECPAM approach
    • Dodge Y, Whittaker J, eds. Heidelberg: Physica-Verlag
    • Ciampi A, Hendricks L, Lou Z. Tree-growing for the multivariate model: the RECPAM approach. In: Dodge Y, Whittaker J, eds. Computational Statistics. Vol 1. Heidelberg: Physica-Verlag, 1992:131-136.
    • (1992) Computational Statistics , vol.1 , pp. 131-136
    • Ciampi, A.1    Hendricks, L.2    Lou, Z.3
  • 82
    • 0343350439 scopus 로고
    • A strategy for binary description and classification
    • Tibshirani R, LeBlanc M. A strategy for binary description and classification. J Comput Graph Stat 1992;1:3-20.
    • (1992) J Comput Graph Stat , vol.1 , pp. 3-20
    • Tibshirani, R.1    LeBlanc, M.2
  • 83
    • 84937471158 scopus 로고    scopus 로고
    • On the development and validation of classification schemes in survival data
    • Klar R, Opitz O, eds. Berlin, Heidelberg, New York: Springer
    • Sauerbrei W. On the development and validation of classification schemes in survival data. In: Klar R, Opitz O, eds. Classification and Knowledge Organization. Berlin, Heidelberg, New York: Springer, 1997:509-518.
    • (1997) Classification and Knowledge Organization , pp. 509-518
    • Sauerbrei, W.1
  • 84
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learn 1996;24:123-140.
    • (1996) Machine Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 85
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann Stat 2000;2:334-374.
    • (2000) Ann Stat , vol.2 , pp. 334-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 86
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learn 2001;45:5-32.
    • (2001) Machine Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 87
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for construting ensembles of decision trees: Bagging, boosting, and randomization
    • Diettrich TG. An experimental comparison of three methods for construting ensembles of decision trees: bagging, boosting, and randomization. Machine Learn 2000; 40:139-157.
    • (2000) Machine Learn , vol.40 , pp. 139-157
    • Diettrich, T.G.1
  • 89
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures (with comments and a rejoinder by the author)
    • Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci 2001;16:199-231.
    • (2001) Stat Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 92
    • 0027948626 scopus 로고
    • The Nottingham Prognostic Index applied to 9,149 patients from the studies of the Danish Breast Cancer Cooperative Group (DBCG)
    • Balslev I, Axelsson CK, Zedeler K, Rasmussen BB, Carstensen B, Mouridsen HT. The Nottingham Prognostic Index applied to 9,149 patients from the studies of the Danish Breast Cancer Cooperative Group (DBCG). Breast Cancer Res Treat 1994; 32:281-290.
    • (1994) Breast Cancer Res Treat , vol.32 , pp. 281-290
    • Balslev, I.1    Axelsson, C.K.2    Zedeler, K.3    Rasmussen, B.B.4    Carstensen, B.5    Mouridsen, H.T.6
  • 93
    • 0031929274 scopus 로고    scopus 로고
    • The prognostic contribution of estrogen and progesterone receptor status to a modified version of the Nottingham Prognostic Index
    • Collett K, Skjaerven R, Machle BO. The prognostic contribution of estrogen and progesterone receptor status to a modified version of the Nottingham Prognostic Index. Breast Cancer Res Treat 1998;48:1-9.
    • (1998) Breast Cancer Res Treat , vol.48 , pp. 1-9
    • Collett, K.1    Skjaerven, R.2    Machle, B.O.3
  • 94
    • 0031160755 scopus 로고    scopus 로고
    • Using regression models for prediction: Shrinkage and regression to the mean
    • Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Stat Methods Med Res 1997;6:167-183.
    • (1997) Stat Methods Med Res , vol.6 , pp. 167-183
    • Copas, J.B.1
  • 95
    • 0031522791 scopus 로고    scopus 로고
    • On the relation between the shrinkage effect and a shrinkage method
    • Vach W. On the relation between the shrinkage effect and a shrinkage method. Comput Stat 1997;12:279-292.
    • (1997) Comput Stat , vol.12 , pp. 279-292
    • Vach, W.1
  • 97
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • Baxt WG. Application of artificial neural networks to clinical medicine. Lancet 1995; 346:1135-1138.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 99
    • 0028812688 scopus 로고
    • Artificial neural networks in pathology and medical laboratories
    • Dybowski R, Gant, V. Artificial neural networks in pathology and medical laboratories. Lancet 1995;346:1203-1207.
    • (1995) Lancet , vol.346 , pp. 1203-1207
    • Dybowski, R.1    Gant, V.2
  • 100
    • 0029635662 scopus 로고
    • Nervous about artificial neural networks?
    • Wyatt J. Nervous about artificial neural networks? Lancet 1995;346:1175-1177.
    • (1995) Lancet , vol.346 , pp. 1175-1177
    • Wyatt, J.1
  • 101
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000;19:541-561.
    • (2000) Stat Med , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 102
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • Penny W, Frost D. Neural networks in clinical medicine. Med Decis Making 1996; 16:386-398.
    • (1996) Med Decis Making , vol.16 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 103
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective (with discussion)
    • Cheng B, Titterington DM. Neural networks: a review from a statistical perspective (with discussion). Stat Sci 1994;9:2-54.
    • (1994) Stat Sci , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 104
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • Barndorff-Nielsen OE, Jensen JL, eds. London: Chapman and Hall
    • Ripley BD. Statistical aspects of neural networks. In: Barndorff-Nielsen OE, Jensen JL, eds. Networks and Chaos: Statistical and Probabilistic Aspects. London: Chapman and Hall, 1993: 40-123.
    • (1993) Networks and Chaos: Statistical and Probabilistic Aspects , pp. 40-123
    • Ripley, B.D.1
  • 106
    • 0003140365 scopus 로고    scopus 로고
    • Neural networks in applied statistics (with discussion)
    • Stern HS. Neural networks in applied statistics (with discussion). Technometrics 1996;38:205-220.
    • (1996) Technometrics , vol.38 , pp. 205-220
    • Stern, H.S.1
  • 107
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Warner B, Misra M. Understanding neural networks as statistical tools. American Statistician 1996;50:284-293.
    • (1996) American Statistician , vol.50 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 108
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989;2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 109
  • 111
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome on individual breast cancer patients
    • Ravdin PM, Clark GM. A practical application of neural network analysis for predicting outcome on individual breast cancer patients. Breast Cancer Res Treat 1992; 22:285-293.
    • (1992) Breast Cancer Res Treat , vol.22 , pp. 285-293
    • Ravdin, P.M.1    Clark, G.M.2
  • 113
    • 0028019225 scopus 로고
    • Survival analysis of censored data: Neural network analysis detection of complex interactions between variables
    • De Laurentiis M, Ravdin PM. Survival analysis of censored data: neural network analysis detection of complex interactions between variables. Breast Cancer Res Treat1994;32:113-118.
    • (1994) Breast Cancer Res Treat , vol.32 , pp. 113-118
    • De Laurentiis, M.1    Ravdin, P.M.2
  • 114
    • 0028044828 scopus 로고
    • Artificial neural networks for cancer research: Outcome prediction
    • Burke HB. Artificial neural networks for cancer research: outcome prediction. Semin Surg Oncol 1994;10:73-79.
    • (1994) Semin Surg Oncol , vol.10 , pp. 73-79
    • Burke, H.B.1
  • 116
    • 0027741408 scopus 로고
    • Neural network analysis to predict treatment outcome
    • Kappen HJ, Neijt JP. Neural network analysis to predict treatment outcome. Ann Oncol 1993;4(suppl):31-34.
    • (1993) Ann Oncol , vol.4 , pp. 31-34
    • Kappen, H.J.1    Neijt, J.P.2
  • 117
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi D, Simon R. A neural network model for survival data. Stat Med 1995; 14:73-82.
    • (1995) Stat Med , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 118
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli E, Boracchi P, Mariani L, Marubini E. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 1998;17:1169-1186.
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 119
    • 0011827330 scopus 로고    scopus 로고
    • Neural networks as statistical methods in survival analysis
    • Dybowski R, Gant V, eds. New York: Cambridge University Press
    • Ripley BD, Ripley RM. Neural networks as statistical methods in survival analysis. In: Dybowski R, Gant V, eds. Clinical Application of Artificial Neural Networks. New York: Cambridge University Press, 2001:237-255.
    • (2001) Clinical Application of Artificial Neural Networks , pp. 237-255
    • Ripley, B.D.1    Ripley, R.M.2
  • 120
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • Biganzoli E, Boracchi P, Marubini E. A general framework for neural network models on censored survival data. Neural Networks 2002;15:209-218.
    • (2002) Neural Networks , vol.15 , pp. 209-218
    • Biganzoli, E.1    Boracchi, P.2    Marubini, E.3
  • 121
    • 1442350707 scopus 로고    scopus 로고
    • Non-linear survival analysis using neural networks
    • Ripley RM, Harris AL, Tarassenko L. Non-linear survival analysis using neural networks. Stat Med 2004;23:825-842.
    • (2004) Stat Med , vol.23 , pp. 825-842
    • Ripley, R.M.1    Harris, A.L.2    Tarassenko, L.3
  • 122
    • 0031036070 scopus 로고    scopus 로고
    • Validation of existing and development of new prognostic classification schemes in node negative breast cancer
    • Sauerbrei W, Hübner K, Schmoor C, Schumacher M for the German Breast Cancer Study Group. Validation of existing and development of new prognostic classification schemes in node negative breast cancer. Breast Cancer Res Treat 1997; 42:149-163.
    • (1997) Breast Cancer Res Treat , vol.42 , pp. 149-163
    • Sauerbrei, W.1    Hübner, K.2    Schmoor, C.3    Schumacher, M.4
  • 123
    • 0031971255 scopus 로고    scopus 로고
    • Validation of existing and development of new prognostic classification schemes in node negative breast cancer
    • Sauerbrei W, Hübner K, Schmoor C, Schumacher M for the German Breast Cancer Study Group. Validation of existing and development of new prognostic classification schemes in node negative breast cancer. Correction. Breast Cancer Res Treat 1998;48:191-192.
    • (1998) Correction Breast Cancer Res Treat , vol.48 , pp. 191-192
    • Sauerbrei, W.1    Hübner, K.2    Schmoor, C.3    Schumacher, M.4
  • 124
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004;23:723-748.
    • (2004) Stat Med , vol.23 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 125
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med 1999;18:2529-2545.
    • (1999) Stat Med , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 126
    • 0348225433 scopus 로고    scopus 로고
    • How to assess prognostic models for survival data: A case study in oncology
    • Schumacher M, Graf E, Gerds T. How to assess prognostic models for survival data: a case study in oncology. Methods Inf Med 2003;42:564-571.
    • (2003) Methods Inf Med , vol.42 , pp. 564-571
    • Schumacher, M.1    Graf, E.2    Gerds, T.3
  • 127
    • 0015318783 scopus 로고
    • Accuracy of predictions of survival in later stages of cancer
    • Parkes MC. Accuracy of predictions of survival in later stages of cancer. BMJ 1972; 264:29-31.
    • (1972) BMJ , vol.264 , pp. 29-31
    • Parkes, M.C.1
  • 128
    • 0024230455 scopus 로고
    • Predicting life span for applicants to inpatient hospice
    • Forster LA, Lynn J. Predicting life span for applicants to inpatient hospice. Arch Intern Med 1988;148:2540-2543.
    • (1988) Arch Intern Med , vol.148 , pp. 2540-2543
    • Forster, L.A.1    Lynn, J.2
  • 130
    • 0002787843 scopus 로고    scopus 로고
    • Prediction in survival analysis. model or medic
    • Jewell NP, Kimber AC, Ting Lee ML, Withmore GA, eds. Dordrecht: Kluwer Academic Publishers
    • Henderson R, Jones M. Prediction in survival analysis. model or medic. In: Jewell NP, Kimber AC, Ting Lee ML, Withmore GA, eds. Lifetime Data: Models in Reliability and Survival Analysis. Dordrecht: Kluwer Academic Publishers, 1996: 125-129.
    • (1996) Lifetime Data: Models in Reliability and Survival Analysis , pp. 125-129
    • Henderson, R.1    Jones, M.2
  • 131
    • 85123814686 scopus 로고
    • Problems and prediction in survival-data analysis
    • Henderson R. Problems and prediction in survival-data analysis. Stat Med 1995; 3:143-152.
    • (1995) Stat Med , vol.3 , pp. 143-152
    • Henderson, R.1
  • 132
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier GW. Verification of forecasts expressed in terms of probability. Monthly Weather Rev 1950;78:1-3.
    • (1950) Monthly Weather Rev , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 133
    • 0018133985 scopus 로고
    • The measurement of performance in probabilistic diagnosis III: Methods based on continuous functions of the diagnostic probabilities
    • Hilden J, Habbema JDF, Bjerregard B. The measurement of performance in probabilistic diagnosis III: methods based on continuous functions of the diagnostic probabilities. Methods of Informations in Medicine 1978;17:238-246.
    • (1978) Methods of Informations in Medicine , vol.17 , pp. 238-246
    • Hilden, J.1    Habbema, J.D.F.2    Bjerregard, B.3
  • 135
    • 0017406169 scopus 로고    scopus 로고
    • The evaluation of clinical predictions
    • Shapiro AR. The evaluation of clinical predictions. N Engl J Med 1997; 296:1509-1514.
    • (1997) N Engl J Med , vol.296 , pp. 1509-1514
    • Shapiro, A.R.1
  • 136
    • 0000039640 scopus 로고
    • Explained residual variation, explained risk and goodness of fit
    • Korn EJ, Simon R. Explained residual variation, explained risk and goodness of fit. American Statistician 1991;45:201-206.
    • (1991) American Statistician , vol.45 , pp. 201-206
    • Korn, E.J.1    Simon, R.2
  • 137
    • 3242782539 scopus 로고
    • The explained variation in proportional hazards regression
    • Schemper M. The explained variation in proportional hazards regression. Biometrika 1990; 77:216-218.
    • (1990) Biometrika , vol.77 , pp. 216-218
    • Schemper, M.1
  • 138
    • 84865491183 scopus 로고
    • The explained variation in proportional hazards regression
    • Schemper M. The explained variation in proportional hazards regression. Correction. Biometrika 1994;81:631.
    • (1994) Correction Biometrika , vol.81 , pp. 631
    • Schemper, M.1
  • 139
    • 0040757929 scopus 로고
    • An investigation on measures of explained variation in survival analysis
    • Graf E, Schumacher M. An investigation on measures of explained variation in survival analysis. Statistician 1995;44:497-507.
    • (1995) Statistician , vol.44 , pp. 497-507
    • Graf, E.1    Schumacher, M.2
  • 140
    • 0029785607 scopus 로고    scopus 로고
    • Explained variation in survival analysis
    • Schemper M, Stare J. Explained variation in survival analysis. Stat Med 1996; 15:1999-2012.
    • (1996) Stat Med , vol.15 , pp. 1999-2012
    • Schemper, M.1    Stare, J.2
  • 141
    • 0033611592 scopus 로고    scopus 로고
    • R2: A useful measure of model performance when predicting a dichotomous outcome
    • Ash A, Schwartz M. R2: a useful measure of model performance when predicting a dichotomous outcome. Stat Med 1999;18:375-384.
    • (1999) Stat Med , vol.18 , pp. 375-384
    • Ash, A.1    Schwartz, M.2
  • 142
    • 84950461478 scopus 로고
    • Estimating the error rate of prediction rule: Improvement on cross-validation
    • Efron B. Estimating the error rate of prediction rule: improvement on cross-validation. JASA 1983;78:316-330.
    • (1983) JASA , vol.78 , pp. 316-330
    • Efron, B.1
  • 143
    • 0031536511 scopus 로고    scopus 로고
    • Improvement on cross-validation: The .632+ bootstrap method
    • Efron B, Tibshirani R. Improvement on cross-validation: the .632+ bootstrap method. JASA 1997;92:548-560.
    • (1997) JASA , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 144
    • 26844497970 scopus 로고    scopus 로고
    • A comparison of nonparametric error rate estimation methods in classification problems
    • Wehberg S, Schumacher M. A comparison of nonparametric error rate estimation methods in classification problems. Biometrical J. 2004;46;35-47.
    • (2004) Biometrical J , vol.46 , pp. 35-47
    • Wehberg, S.1    Schumacher, M.2
  • 145
    • 0020974571 scopus 로고
    • Sample size formula for the proportional-hazard regression model
    • Schoenfeld DA. Sample size formula for the proportional-hazard regression model. Biometrics 1983;39:499-503.
    • (1983) Biometrics , vol.39 , pp. 499-503
    • Schoenfeld, D.A.1
  • 146
    • 0015949151 scopus 로고
    • Planning the size and duration of a clinical trial studying the time to some critical event
    • George SL, Desu MM. Planning the size and duration of a clinical trial studying the time to some critical event. J Chronic Dis 1974;27:15-24.
    • (1974) J Chronic Dis , vol.27 , pp. 15-24
    • George, S.L.1    Desu, M.M.2
  • 147
    • 0002783894 scopus 로고
    • Sample size and power determination for stratified clinical trials
    • Bernstein D, Lagakos SW. Sample size and power determination for stratified clinical trials. J Stat Compu Sim 1978;8:65-73.
    • (1978) J Stat Compu Sim , vol.8 , pp. 65-73
    • Bernstein, D.1    Lagakos, S.W.2
  • 148
    • 0000549737 scopus 로고
    • The asymptotic properties of nonparametric tests for comparing survival distributions
    • Schoenfeld DA. The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika 1981;68:316-319.
    • (1981) Biometrika , vol.68 , pp. 316-319
    • Schoenfeld, D.A.1
  • 149
    • 0034728370 scopus 로고    scopus 로고
    • Sample size considerations for the evaluation of prognostic factors in survival analysis
    • Schmoor, C, Sauerbrei, W, Schumacher M. Sample size considerations for the evaluation of prognostic factors in survival analysis. Stat Med 2000;19:441-452.
    • (2000) Stat Med , vol.19 , pp. 441-452
    • Schmoor, C.1    Sauerbrei, W.2    Schumacher, M.3
  • 150
    • 0026676228 scopus 로고
    • Sample size determination under an exponential model in the presence of a confounder and type I censoring
    • Lui K-J. Sample size determination under an exponential model in the presence of a confounder and type I censoring. Control Clin Trials 1992;13:446-458.
    • (1992) Control Clin Trials , vol.13 , pp. 446-458
    • Lui, K.-J.1
  • 151
    • 0022409997 scopus 로고
    • Consideration of covariates and stratification in sample size determination for survival time studies
    • Palta M, Amini SB. Consideration of covariates and stratification in sample size determination for survival time studies. J Chronic Dis 1985;38:801-809.
    • (1985) J Chronic Dis , vol.38 , pp. 801-809
    • Palta, M.1    Amini, S.B.2
  • 152
    • 0029584326 scopus 로고
    • Importance of events per indepen dent variable in proportional hazards analysis: I. Background, goals and general strategy
    • Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per indepen dent variable in proportional hazards analysis: I. Background, goals and general strategy. J Clin Epidemiol 1995;48:1495-1501.
    • (1995) J Clin Epidemiol , vol.48 , pp. 1495-1501
    • Concato, J.1    Peduzzi, P.2    Holford, T.R.3    Feinstein, A.R.4
  • 153
    • 0029613841 scopus 로고
    • Importance of events per independent variable in proportional hazards analysis: II. Accuracy and precision of regression estimates
    • Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards analysis: II. Accuracy and precision of regression estimates. J Clin Epidemiol 1995;48:1503-1510.
    • (1995) J Clin Epidemiol , vol.48 , pp. 1503-1510
    • Peduzzi, P.1    Concato, J.2    Feinstein, A.R.3    Holford, T.R.4
  • 155
    • 0021857146 scopus 로고
    • Regression models for prognostic prediction: Advantages, problems and suggested solutions
    • Harrell FE, Lee KL, Matchar DB, Reichert TA. Regression models for prognostic prediction: advantages, problems and suggested solutions. Cancer Treat Rep 1985; 69:1071-1077.
    • (1985) Cancer Treat Rep , vol.69 , pp. 1071-1077
    • Harrell, F.E.1    Lee, K.L.2    Matchar, D.B.3    Reichert, T.A.4
  • 156
    • 0025099777 scopus 로고
    • On power and sample size for studying features of the relative odds of disease
    • Lubin JH, Gail MJ. On power and sample size for studying features of the relative odds of disease. Am J Epidemiol 1990;131:551-566.
    • (1990) Am J Epidemiol , vol.131 , pp. 551-566
    • Lubin, J.H.1    Gail, M.J.2
  • 157
    • 0027136747 scopus 로고
    • Sample size requirements and length of study for testing interaction in a 2 X k factorial design when time-to-failure is the outcome
    • Peterson B, George SL. Sample size requirements and length of study for testing interaction in a 2 X k factorial design when time-to-failure is the outcome. Control Clin Trials 1993;14:511-522.
    • (1993) Control Clin Trials , vol.14 , pp. 511-522
    • Peterson, B.1    George, S.L.2
  • 158
    • 0026625881 scopus 로고
    • Analysis of randomized and nonrandomized patients in clinical trials using the comprehensive cohort follow-up study design
    • Olschewski M, Schumacher M, Davis K. Analysis of randomized and nonrandomized patients in clinical trials using the comprehensive cohort follow-up study design. Control Clin Trials 1992;13:226-239.
    • (1992) Control Clin Trials , vol.13 , pp. 226-239
    • Olschewski, M.1    Schumacher, M.2    Davis, K.3
  • 159
    • 0029147608 scopus 로고
    • Biostatistical methodology in clinical trials in applications for marketing authorisations for medicinal products. Note for Guidance III/3630/92-EN, December 1994
    • European Community, CPMP Working Party on Efficacy of Medicinal Products. Biostatistical methodology in clinical trials in applications for marketing authorisations for medicinal products. Note for Guidance III/3630/92-EN, December 1994. Stat Med 1995;14:1659-1682.
    • (1995) Stat Med , vol.14 , pp. 1659-1682
  • 160
    • 85123817266 scopus 로고    scopus 로고
    • ICH Harmonised Tripartite Guideline: Guideline for Good Clinical Practice. Recommended for Adoption at Step 4 of the ICH Process on 1 May by the ICH Steering Committee
    • International Conference of Harmonisation and Technical Requirements for Registration of Pharmaceuticals for Human Drugs. ICH Harmonised Tripartite Guideline: Guideline for Good Clinical Practice. Recommended for Adoption at Step 4 of the ICH Process on 1 May 1996 by the ICH Steering Committee.
    • (1996) International Conference of Harmonisation and Technical Requirements for Registration of Pharmaceuticals for Human Drugs
  • 162
    • 0031014468 scopus 로고    scopus 로고
    • Some issues in estimating the effect of prognostic factors from incomplete covariate data
    • Vach, W. Some issues in estimating the effect of prognostic factors from incomplete covariate data. Stat Med 1997;16:57-72.
    • (1997) Stat Med , vol.16 , pp. 57-72
    • Vach, W.1
  • 163
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors are not always observed
    • Robins JM, Rotnitzky A, Zhao LD. Estimation of regression coefficients when some regressors are not always observed. JASA 1994;89:846-866.
    • (1994) JASA , vol.89 , pp. 846-866
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.D.3
  • 164
    • 0031708309 scopus 로고    scopus 로고
    • Estimating equations with incomplete categorical covariates in the Cox model
    • Lipsitz SR, Ibrahim JG. Estimating equations with incomplete categorical covariates in the Cox model. Biometrics 1998;54:1002-1013.
    • (1998) Biometrics , vol.54 , pp. 1002-1013
    • Lipsitz, S.R.1    Ibrahim, J.G.2
  • 165
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • Buuren van S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999;18:681-694.
    • (1999) Stat Med , vol.18 , pp. 681-694
    • Buuren van, S.1    Boshuizen, H.C.2    Knook, D.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.