메뉴 건너뛰기




Volumn 21, Issue 6, 1996, Pages 661-682

Neural networks and logistic regression: Part I

Author keywords

Feed forward neural networks; Logistic regression model; Model selection; Newton Raphson algorithm; Overfitting; Survival data

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTER SIMULATION; FEEDFORWARD NEURAL NETWORKS; MATHEMATICAL MODELS; REGRESSION ANALYSIS;

EID: 0030159465     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/0167-9473(95)00032-1     Document Type: Article
Times cited : (135)

References (71)
  • 1
    • 84942737910 scopus 로고
    • Fitting autoregressive models for prediction
    • Akaike, H., Fitting autoregressive models for prediction, Ann. Inst. Statist. Math., 21 (1969) 243-247.
    • (1969) Ann. Inst. Statist. Math. , vol.21 , pp. 243-247
    • Akaike, H.1
  • 2
    • 0041999655 scopus 로고
    • Mathematical methods in neurocomputing
    • O.E. Barndorff-Nielsen, et al. (Eds.) Chapman and Hall, London
    • Amari, S.J., Mathematical methods in neurocomputing, in: O.E. Barndorff-Nielsen, et al. (Eds.) Chaos and networks-statistical and probabilistic aspects (Chapman and Hall, London; 1993).
    • (1993) Chaos and Networks-statistical and Probabilistic Aspects
    • Amari, S.J.1
  • 3
    • 0003143574 scopus 로고
    • Regression and ordered categorical variables
    • Anderson, J.A., Regression and ordered categorical variables (with discussion), J. Roy. Statist. Soc. B, 46 (1991) 1-30.
    • (1991) J. Roy. Statist. Soc. B , vol.46 , pp. 1-30
    • Anderson, J.A.1
  • 5
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • G. Roussas (Ed.), Kluwer Academic Publishers, Amsterdam
    • Barron, A.R., Complexity regularization with application to artificial neural networks, in: G. Roussas (Ed.), Nonparametric functional estimation and related topics (Kluwer Academic Publishers, Amsterdam, 1991).
    • (1991) Nonparametric Functional Estimation and Related Topics
    • Barron, A.R.1
  • 6
    • 0003073642 scopus 로고
    • Statistical learning networks: A unifying view
    • E. Wegman (Ed.), American Statistical Association, Washington
    • Barron, A.R. and R.L. Barron, Statistical learning networks: a unifying view, in: E. Wegman (Ed.), Computing science and statistics: Proc. 20th Symp. Interface (American Statistical Association, Washington 1988)192-203.
    • (1988) Computing Science and Statistics: Proc. 20th Symp. Interface , pp. 192-203
    • Barron, A.R.1    Barron, R.L.2
  • 7
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocardial infarction
    • Baxt, W. G., Use of an artificial neural network for the diagnosis of myocardial infarction, Ann. Internal Med., 115 (1991) 843-848.
    • (1991) Ann. Internal Med. , vol.115 , pp. 843-848
    • Baxt, W.G.1
  • 10
    • 0001620014 scopus 로고
    • Asymptotic efficiency in estimation with conditional moment restrictions
    • Chamberlain, G., Asymptotic efficiency in estimation with conditional moment restrictions, J. Econometrics, 34 (1987) 305-324.
    • (1987) J. Econometrics , vol.34 , pp. 305-324
    • Chamberlain, G.1
  • 11
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng, B. and D.M. Titterington, Neural networks: A review from a statistical perspective (with discussion), Statist. Sci., 9 (1994) 2-54.
    • (1994) Statist. Sci. , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 12
    • 0043001268 scopus 로고
    • Statistical and neural network techniques for nonparametric regression
    • P. Cheeseman and R.W. Oldford (Eds.), Springer, New York
    • Cherkassky, V. and F. Mulier, Statistical and neural network techniques for nonparametric regression, in: P. Cheeseman and R.W. Oldford (Eds.), Selecting models from data: AI and statistics IV (Springer, New York, 1994) 383-392.
    • (1994) Selecting Models from Data: AI and Statistics , vol.4 , pp. 383-392
    • Cherkassky, V.1    Mulier, F.2
  • 14
    • 0000336139 scopus 로고
    • Regression models and life tables
    • Cox, D.R., Regression models and life tables (with discussion), J. Roy. Statist. Soc. B, 34 (1972) 187-220.
    • (1972) J. Roy. Statist. Soc. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 17
    • 0001401162 scopus 로고
    • On a correspondence between models in binary regression analysis and in survival analysis
    • Doksum, K.A. and M. Gasko, On a correspondence between models in binary regression analysis and in survival analysis, Internat. Statist. Rev., 58, (1990) 243-252.
    • (1990) Internat. Statist. Rev. , vol.58 , pp. 243-252
    • Doksum, K.A.1    Gasko, M.2
  • 18
    • 84995047613 scopus 로고
    • Polytomous logistic regression
    • Engel, J., Polytomous logistic regression, Statist. Neerlandica 42 (1988) 233-252.
    • (1988) Statist. Neerlandica , vol.42 , pp. 233-252
    • Engel, J.1
  • 19
    • 0001241028 scopus 로고
    • Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models
    • Fahrmeir, L. and H. Kaufmann, Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist. 13 (1985) 342-368.
    • (1985) Ann. Statist. , vol.13 , pp. 342-368
    • Fahrmeir, L.1    Kaufmann, H.2
  • 21
    • 0028855843 scopus 로고
    • A neural network for survival data
    • Faraggi, D. and R. Simon, A neural network for survival data, Statist. Med., 14 (1995) 73-82.
    • (1995) Statist. Med. , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 22
    • 0000756680 scopus 로고
    • The estimation from individual records of the relationship between dose and quantal response
    • Finney, D.J., The estimation from individual records of the relationship between dose and quantal response, Biometrika 34 (1947) 320-334.
    • (1947) Biometrika , vol.34 , pp. 320-334
    • Finney, D.J.1
  • 24
    • 0026221027 scopus 로고
    • An information criterion for optimal neural network selection
    • Fogel, D.B., An information criterion for optimal neural network selection, IEEE Trans. Neural Networks, 2 (1991) 490-497.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 490-497
    • Fogel, D.B.1
  • 25
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J.H., Multivariate adaptive regression splines (with discussion), Ann. Statist. 19 (1991) 1-141.
    • (1991) Ann. Statist. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 26
    • 0025746876 scopus 로고
    • On the relations between discriminant analysis and multilayer perceptrons
    • Gallinari, P., S. Thiria, F. Badran and F. Fogelman-Soulie, On the relations between discriminant analysis and multilayer perceptrons, Neural Networks 4 (1991) 349-360.
    • (1991) Neural Networks , vol.4 , pp. 349-360
    • Gallinari, P.1    Thiria, S.2    Badran, F.3    Fogelman-Soulie, F.4
  • 27
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma, Neural Comput., 4 (1992) 1-58.
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 31
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton, G.E., Connectionist learning procedures, Artif. Intelligence, 40 (1989) 185-234.
    • (1989) Artif. Intelligence , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 34
    • 0027741408 scopus 로고
    • Neural network analysis to predict treatment outcome
    • Kappen, H.J. and J.P. Neijt, Neural network analysis to predict treatment outcome, Ann. Oncology, 4, (Suppl). (1993) 31-34.
    • (1993) Ann. Oncology , vol.4 , Issue.SUPPL. , pp. 31-34
    • Kappen, H.J.1    Neijt, J.P.2
  • 35
    • 0026680856 scopus 로고
    • Evaluation of a neural-network classifier for PET scans of normal and Alzheimer disease subjects
    • Kippenhan, J.S., W.W. Barker, S. Pascal, J. Nagel and R. Duara, Evaluation of a neural-network classifier for PET scans of normal and Alzheimer disease subjects, J. Nuclear Med., 33 (1992) 1459-1467.
    • (1992) J. Nuclear Med. , vol.33 , pp. 1459-1467
    • Kippenhan, J.S.1    Barker, W.W.2    Pascal, S.3    Nagel, J.4    Duara, R.5
  • 36
    • 0043001271 scopus 로고
    • Neural networks: Architectures, learning and performance
    • H.H. Bock, W. Lenski and M. Richter (Eds.), Springer, Berlin
    • Kree, R., Neural networks: architectures, learning and performance, in: H.H. Bock, W. Lenski and M. Richter (Eds.), Information systems and data analysis (Springer, Berlin, 1994).
    • (1994) Information Systems and Data Analysis
    • Kree, R.1
  • 39
    • 0001306637 scopus 로고
    • Regression models for ordinal data
    • McCullagh, P., Regression models for ordinal data (with discussion), J. Roy. Statist. Soc. B, 42 (1980) 109-142.
    • (1980) J. Roy. Statist. Soc. B , vol.42 , pp. 109-142
    • McCullagh, P.1
  • 44
    • 0011358302 scopus 로고
    • Least-absolute-deviations fits for generalized linear models
    • Morgenthaler, S., Least-absolute-deviations fits for generalized linear models, Biometrika, 79 (1992) 767-754.
    • (1992) Biometrika , vol.79 , pp. 767-1754
    • Morgenthaler, S.1
  • 45
    • 21844508678 scopus 로고
    • Neural networks and related 'massively parallel' methods for statistics: A short overview
    • Murtagh, F., Neural networks and related 'massively parallel' methods for statistics: a short overview, Internat. Statist. Rev., 62 (1994) 275-288.
    • (1994) Internat. Statist. Rev. , vol.62 , pp. 275-288
    • Murtagh, F.1
  • 46
    • 0041999654 scopus 로고
    • A neural network approach to assess myocardial infarction
    • Lun et al. (Eds.), Elsevier, Amsterdam
    • Pazos, A., V. Maojo, F. Martin and N. Ezquerra, A neural network approach to assess myocardial infarction, in: Lun et al. (Eds.), Medinfo: 92 (Elsevier, Amsterdam, 1992) 659-663.
    • (1992) Medinfo , vol.92 , pp. 659-663
    • Pazos, A.1    Maojo, V.2    Martin, F.3    Ezquerra, N.4
  • 47
    • 0020148757 scopus 로고
    • Resistant fits for some commonly used logistic models with medical applications
    • Pregibon, D., Resistant fits for some commonly used logistic models with medical applications, Biometrics, 38 (1982) 485-498.
    • (1982) Biometrics , vol.38 , pp. 485-498
    • Pregibon, D.1
  • 48
    • 0017873866 scopus 로고
    • Regression analysis of grouped survival data with application to breast cancer data
    • Prentice, R.L. and L.A. Gloeckler, Regression analysis of grouped survival data with application to breast cancer data, Biometrics, 34 (1978) 57-67.
    • (1978) Biometrics , vol.34 , pp. 57-67
    • Prentice, R.L.1    Gloeckler, L.A.2
  • 49
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome of individual breast cancer patients
    • Ravdin, P.M., G.M. Clark, A practical application of neural network analysis for predicting outcome of individual breast cancer patients, Breast Cancer Res. Treatment, 22 (1992) 285-293.
    • (1992) Breast Cancer Res. Treatment , vol.22 , pp. 285-293
    • Ravdin, P.M.1    Clark, G.M.2
  • 51
    • 0002358812 scopus 로고
    • Neural networks for classification of EEG signals
    • Lun et al. (Eds.), Elsevier Amsterdam
    • Reddy D.C. and D.R. Korrai, Neural networks for classification of EEG signals, in: Lun et al. (Eds.), Medinfo: 92 (Elsevier Amsterdam, 1992) 653-658.
    • (1992) Medinfo , vol.92 , pp. 653-658
    • Reddy, D.C.1    Korrai, D.R.2
  • 52
    • 0043001269 scopus 로고
    • Software for neural networks
    • University of Oxford, Oxford
    • Ripley, B.D., Software for neural networks, Techn. Report (University of Oxford, Oxford, 1993a).
    • (1993) Techn. Report
    • Ripley, B.D.1
  • 53
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • O.E. Barndorff-Nielsen et al. (Eds.), Chapman and Hall, London
    • Ripley, B.D., Statistical aspects of neural networks, in: O.E. Barndorff-Nielsen et al. (Eds.), Chaos and networks - statistical and probabilistic aspects (Chapman and Hall, London 1993b).
    • (1993) Chaos and Networks - Statistical and Probabilistic Aspects
    • Ripley, B.D.1
  • 54
    • 0343434338 scopus 로고
    • Neural networks and flexible regression and discrimination
    • K.V. Mardia (ed.), Carfax, Abingdon
    • Ripley, B.D., Neural networks and flexible regression and discrimination, in: K.V. Mardia (ed.), Statistics and images (Carfax, Abingdon, 1994a).
    • (1994) Statistics and Images
    • Ripley, B.D.1
  • 55
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • Ripley, B.D., Neural networks and related methods for classification (with discussion), J. Roy. Statist. Soc. B, 56 (1994b) 409-456.
    • (1994) J. Roy. Statist. Soc. B , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 56
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Rumelhart, D.E., G.E. Hinton and R.J. Williams, Learning representations by back-propagation errors, Nature, 323 (1986) 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 60
    • 84980146042 scopus 로고
    • Point estimation in quantal response models
    • Schumacher, M., Point estimation in quantal response models, Biomet. J., 22 (1980) 315-334.
    • (1980) Biomet. J. , vol.22 , pp. 315-334
    • Schumacher, M.1
  • 61
    • 0027729155 scopus 로고
    • A neural-network approach to predicting admission in a psychiatric emergency room
    • Somoza, E. and J.R. Somoza, A neural-network approach to predicting admission in a psychiatric emergency room, Med. Decision Making, 13 (1993) 273-280.
    • (1993) Med. Decision Making , vol.13 , pp. 273-280
    • Somoza, E.1    Somoza, J.R.2
  • 62
    • 0026396714 scopus 로고
    • Maximum likelihood training of connectionist models: Comparison with least squares back-propagation and logistic regression
    • Spackman, K.A., Maximum likelihood training of connectionist models: comparison with least squares back-propagation and logistic regression, Proc. 15th Ann. Symp. on Computer Applications in Medical Care, 1991.
    • (1991) Proc. 15th Ann. Symp. on Computer Applications in Medical Care
    • Spackman, K.A.1
  • 63
  • 65
    • 0027288642 scopus 로고
    • Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
    • Tu, J.V. and M.R.J. Guerriere, Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery, Comput. Biomed. Res. 26 (1993) 220-229.
    • (1993) Comput. Biomed. Res. , vol.26 , pp. 220-229
    • Tu, J.V.1    Guerriere, M.R.J.2
  • 67
    • 0000539096 scopus 로고
    • Generalization by weight elimination with application to forecasting
    • Morgan Kaufman, Los Altos, CA
    • Weigend, A., D. Rumelhart and B. Huberman, Generalization by weight elimination with application to forecasting, in: Advances in neural information processing III (Morgan Kaufman, Los Altos, CA, 1991).
    • (1991) Advances in Neural Information Processing , vol.3
    • Weigend, A.1    Rumelhart, D.2    Huberman, B.3
  • 68
    • 0026498426 scopus 로고
    • Neural computing in cancer drug development: Predicting mechanism of action
    • Weinstein, J.N., K.W. Kohn, M.R. Greuer, V.N. Viswanadhan, L.V. Rubinstein, et al., Neural computing in cancer drug development: Predicting mechanism of action. Science, 258 (1992) 447-451.
    • (1992) Science , vol.258 , pp. 447-451
    • Weinstein, J.N.1    Kohn, K.W.2    Greuer, M.R.3    Viswanadhan, V.N.4    Rubinstein, L.V.5
  • 70
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu, Y., M.L. Giger, K. Doi, C.J. Vyborny, R.A. Schmidt and C.E. Metz, Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer, Radiology 187 (1993) 81-87.
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 71
    • 0003421109 scopus 로고
    • Stuttgart neural network simulator
    • Report No. 3/93 Institute for Parallel and Distributed High Performance Systems, University of Stuttgart
    • Zell, A., N. Mache, R. Hübner, G. Mamier, M. Vogt et al., Stuttgart neural network simulator; user manual, Version 3.2, Report No. 3/93 (Institute for Parallel and Distributed High Performance Systems, University of Stuttgart, 1993).
    • (1993) User Manual, Version 3.2
    • Zell, A.1    Mache, N.2    Hübner, R.3    Mamier, G.4    Vogt, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.