메뉴 건너뛰기




Volumn 1, Issue 4, 2016, Pages

The role of metal–organic frameworks in a carbon-neutral energy cycle

Author keywords

[No Author keywords available]

Indexed keywords

CARBON DIOXIDE; CLIMATE CHANGE; FOSSIL FUELS; METALS; MOLECULES; ORGANIC CARBON;

EID: 85121515041     PISSN: None     EISSN: 20587546     Source Type: Journal    
DOI: 10.1038/NENERGY.2016.34     Document Type: Review
Times cited : (405)

References (101)
  • 2
    • 85136543815 scopus 로고    scopus 로고
    • World Bank
    • CO2 Emissions (World Bank, 2015); http://go.nature.com/yLaqyF
    • (2015)
  • 3
    • 85136540094 scopus 로고    scopus 로고
    • America’s Energy Future: Technology and Transformation: Summary Edition (National Academies Press)
    • America’s Energy Future: Technology and Transformation: Summary Edition (National Academies Press, 2009); http://go.nature.com/YLvTAe This report provides information on potentials, barriers, costs and impacof energy supply and technologies.
    • (2009)
  • 4
    • 85136589299 scopus 로고    scopus 로고
    • China’s Energy and Carbon Emissions Outlook to 2050 (China Energy Group, Lawrence Berkeley National Laboratory
    • Zhou, N. et al. China’s Energy and Carbon Emissions Outlook to 2050 (China Energy Group, Lawrence Berkeley National Laboratory, 2011); http://go.nature.com/toqvwR
    • (2011)
    • Zhou, N.1
  • 6
    • 85136600283 scopus 로고    scopus 로고
    • Beyond 2020 (US Department of Energy
    • Basic Research Needs for Carbon Capture: Beyond 2020 (US Department of Energy, 2010); http://go.nature.com/1bM9qj
    • (2010)
  • 9
    • 85136601319 scopus 로고    scopus 로고
    • An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies (Clean Energy States Alliance
    • Lipman, T. An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies (Clean Energy States Alliance, 2011); http://go.nature.com/p2ZuT4
    • (2011)
    • Lipman, T.1
  • 10
    • 0035891289 scopus 로고    scopus 로고
    • Hydrogen-storage materials for mobile applications
    • Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).
    • (2001) Nature , vol.414 , pp. 353-358
    • Schlapbach, L.1    Zuttel, A.2
  • 11
    • 79959395297 scopus 로고    scopus 로고
    • Hydrogen Storage (US Department of Energy, 2015); http://go.nature.com/ispE6Q
    • (2015) Hydrogen Storage
  • 12
    • 85136579945 scopus 로고    scopus 로고
    • Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles
    • Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (USDRIVE, 2015); http://go.nature.com/EHHdZ5
    • (2015) USDRIVE
  • 13
    • 85136580196 scopus 로고    scopus 로고
    • Mercedes-Benz F125 concept: Mercedes’ dream of a 2025 S-class takes flight
    • 21 October
    • Zoellter, J. Mercedes-Benz F125 concept: Mercedes’ dream of a 2025 S-class takes flight. Car and Driver (21 October 2015); http://go.nature.com/kFaC3e
    • (2015) Car and Driver
    • Zoellter, J.1
  • 14
    • 85136567603 scopus 로고    scopus 로고
    • Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
    • Sudik, A. et al. Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence (HSECoE, 2015); http://go.nature. com/SrJePp
    • (2015) Hsecoe
    • Sudik, A.1
  • 15
    • 53249136449 scopus 로고    scopus 로고
    • 2 uptake by “close-packing” alignment of open copper sites in metal–organic frameworks
    • 2 uptake by “close-packing” alignment of open copper sites in metal–organic frameworks. Angew. Chem. Int. Ed. 47, 7263–7266 (2008).
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 7263-7266
    • Wang, X.-S.1
  • 16
    • 84863011092 scopus 로고    scopus 로고
    • Hydrogen storage in metal– organic frameworks
    • Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal– organic frameworks. Chem. Rev. 112, 782–835 (2012).
    • (2012) Chem. Rev. , vol.112 , pp. 782-835
    • Suh, M.P.1    Park, H.J.2    Prasad, T.K.3    Lim, D.-W.4
  • 17
    • 31944444897 scopus 로고    scopus 로고
    • Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks
    • Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 1304-1315
    • Rowsell, J.L.C.1    Yaghi, O.M.2
  • 18
    • 23044451308 scopus 로고    scopus 로고
    • Strategies for hydrogen storage in metal– organic frameworks
    • This paper highlights different strategies for hydrogen storage in MOFs being used today and has led to room temperature uptake of 2–3 wt% and 6 wt% at 77 K
    • Rowsell, J. L. C. & Yaghi, O. M. Strategies for hydrogen storage in metal– organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005). This paper highlights different strategies for hydrogen storage in MOFs being used today and has led to room temperature uptake of 2–3 wt% and 6 wt% at 77 K.
    • (2005) Angew. Chem. Int. Ed , vol.44 , pp. 4670-4679
    • Rowsell, J.L.C.1    Yaghi, O.M.2
  • 19
    • 67749114491 scopus 로고    scopus 로고
    • Post-synthesis alkoxide formation within metal−organic framework materials: A strategy for incorporating highly coordinatively unsaturated metal ions
    • Mulfort, K. L., Farha, O. K., Stern, C. L., Sarjeant, A. A. & Hupp, J. T. Post-synthesis alkoxide formation within metal−organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131, 3866–3868 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 3866-3868
    • Mulfort, K.L.1    Farha, O.K.2    Stern, C.L.3    Sarjeant, A.A.4    Hupp, J.T.5
  • 20
    • 31444431971 scopus 로고    scopus 로고
    • Significantly enhanced hydrogen storage in metal−organic frameworks via spillover
    • Li, Y. & Yang, R. T. Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006).
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 726-727
    • Li, Y.1    Yang, R.T.2
  • 21
    • 1142298818 scopus 로고    scopus 로고
    • A route to high surface area, porosity and inclusion of large molecules in crystals
    • This contribution details a strategy and interpretation for using exposed six-membered rings to make ultrahigh-porosity MOFs
    • Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004). This contribution details a strategy and interpretation for using exposed six-membered rings to make ultrahigh-porosity MOFs.
    • (2004) Nature , vol.427 , pp. 523-527
    • Chae, H.K.1
  • 22
    • 34547516632 scopus 로고    scopus 로고
    • Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks
    • Furukawa, H., Miller, M. A. & Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks. J. Mater. Chem. 17, 3197–3204 (2007).
    • (2007) J. Mater. Chem. , vol.17 , pp. 3197-3204
    • Furukawa, H.1    Miller, M.A.2    Yaghi, O.M.3
  • 23
    • 0345171601 scopus 로고    scopus 로고
    • Polycatenation, polythreading and polyknotting in coordination network chemistry
    • Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).
    • (2003) Coord. Chem. Rev. , vol.246 , pp. 247-289
    • Carlucci, L.1    Ciani, G.2    Proserpio, D.M.3
  • 24
    • 77954858281 scopus 로고    scopus 로고
    • Ultrahigh porosity in metal–organic frameworks
    • Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).
    • (2010) Science , vol.329 , pp. 424-428
    • Furukawa, H.1
  • 25
    • 84895747193 scopus 로고    scopus 로고
    • A new metal–organic framework with ultra-high surface area
    • Grunker, R. et al. A new metal–organic framework with ultra-high surface area. Chem. Commun. 50, 3450–3452 (2014).
    • (2014) Chem. Commun. , vol.50 , pp. 3450-3452
    • Grunker, R.1
  • 26
    • 0034798231 scopus 로고    scopus 로고
    • 4 paddle-wheel building blocks
    • 4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001).
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 4368-4369
    • Eddaoudi, M.1
  • 27
    • 0035820889 scopus 로고    scopus 로고
    • Nanoballs: Nanoscale faceted polyhedra with large windows and cavities
    • Moulton, B., Lu, J., Mondal, A. & Zaworotko, M. J. Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem. Commun. 9, 863–864 (2001).
    • (2001) Chem. Commun. , Issue.9 , pp. 863-864
    • Moulton, B.1    Lu, J.2    Mondal, A.3    Zaworotko, M.J.4
  • 28
    • 39049121414 scopus 로고    scopus 로고
    • Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks
    • 2 adsorption
    • 2 adsorption.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 1833-1835
    • Nouar, F.1
  • 29
    • 77950209664 scopus 로고    scopus 로고
    • 2 adsorption capacities and neutron powder diffraction studies
    • 2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092–4094 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 4092-4094
    • Yan, Y.1
  • 30
    • 77954858634 scopus 로고    scopus 로고
    • An isoreticular series of metal– organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity
    • Yuan, D., Zhao, D., Sun, D. & Zhou, H.-C. An isoreticular series of metal– organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010).
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 5357-5361
    • Yuan, D.1    Zhao, D.2    Sun, D.3    Zhou, H.-C.4
  • 31
    • 78049347869 scopus 로고    scopus 로고
    • De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities
    • Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).
    • (2010) Nature Chem , vol.2 , pp. 944-948
    • Farha, O.K.1
  • 32
    • 84862534248 scopus 로고    scopus 로고
    • Designing higher surface area metal–organic frameworks: Are triple bonds better than phenyls?
    • Farha, O. K. et al. Designing higher surface area metal–organic frameworks: are triple bonds better than phenyls? J. Am. Chem. Soc. 134, 9860–9863 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 9860-9863
    • Farha, O.K.1
  • 33
    • 84866377075 scopus 로고    scopus 로고
    • Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit?
    • This paper reports a MOF that currently holds the world record with respect to BET surface area
    • Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012). This paper reports a MOF that currently holds the world record with respect to BET surface area.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 15016-15021
    • Farha, O.K.1
  • 34
    • 84889246368 scopus 로고    scopus 로고
    • Programmed pore architectures in modular quaternary metal–organic frameworks
    • Liu, L., Konstas, K., Hill, M. R. & Telfer, S. G. Programmed pore architectures in modular quaternary metal–organic frameworks. J. Am. Chem. Soc. 135, 17731–17734 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 17731-17734
    • Liu, L.1    Konstas, K.2    Hill, M.R.3    Telfer, S.G.4
  • 35
    • 84884843119 scopus 로고    scopus 로고
    • A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets
    • Schoedel, A., Boyette, W., Wojtas, L., Eddaoudi, M. & Zaworotko, M. J. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets. J. Am. Chem. Soc. 135, 14016–14019 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 14016-14019
    • Schoedel, A.1    Boyette, W.2    Wojtas, L.3    Eddaoudi, M.4    Zaworotko, M.J.5
  • 36
    • 84874612464 scopus 로고    scopus 로고
    • The asc trinodal platform: Two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks
    • Schoedel, A. et al. The asc trinodal platform: two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks. Angew. Chem. Int. Ed. 52, 2902–2905 (2013).
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 2902-2905
    • Schoedel, A.1
  • 37
    • 33745445413 scopus 로고    scopus 로고
    • Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks
    • Frost, H., Düren, T. & Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006).
    • (2006) J. Phys. Chem. B , vol.110 , pp. 9565-9570
    • Frost, H.1    Düren, T.2    Snurr, R.Q.3
  • 38
    • 31544433946 scopus 로고    scopus 로고
    • Understanding hydrogen adsorption in metal−organic frameworks with open metal sites: A computational study
    • Yang, Q. & Zhong, C. Understanding hydrogen adsorption in metal−organic frameworks with open metal sites: a computational study. J. Phys. Chem. B 110, 655–658 (2006).
    • (2006) J. Phys. Chem. B , vol.110 , pp. 655-658
    • Yang, Q.1    Zhong, C.2
  • 39
    • 69949181506 scopus 로고    scopus 로고
    • Selective gas adsorption in a magnesium-based metal–organic framework
    • Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metal–organic framework. Chem. Commun. 36, 5436–5438 (2009).
    • (2009) Chem. Commun. , Issue.36 , pp. 5436-5438
    • Cheon, Y.E.1    Park, J.2    Suh, M.P.3
  • 40
    • 77950340888 scopus 로고    scopus 로고
    • Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks
    • Bae, Y.-S. & Snurr, R. Q. Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Micropor. Mesopor. Mater. 132, 300–303 (2010).
    • (2010) Micropor. Mesopor. Mater. , vol.132 , pp. 300-303
    • Bae, Y.-S.1    Snurr, R.Q.2
  • 41
    • 84924749677 scopus 로고    scopus 로고
    • Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage
    • Ren, J., Langmi, H. W., North, B. C. & Mathe, M. Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39, 607–620 (2015).
    • (2015) Int. J. Energy Res. , vol.39 , pp. 607-620
    • Ren, J.1    Langmi, H.W.2    North, B.C.3    Mathe, M.4
  • 43
    • 84882270355 scopus 로고    scopus 로고
    • Methane storage in metal–organic frameworks: Current records, surprise findings, and challenges
    • Peng, Y. et al. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 11887-11894
    • Peng, Y.1
  • 44
    • 84926500964 scopus 로고    scopus 로고
    • The materials genome in action: Identifying the performance limits for methane storage
    • Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 1190-1199
    • Simon, C.M.1
  • 45
    • 0037127013 scopus 로고    scopus 로고
    • Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage
    • This publication describes use of the isoreticular principle in making MOFs and designing their interior for methane storage
    • Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). This publication describes use of the isoreticular principle in making MOFs and designing their interior for methane storage.
    • (2002) Science , vol.295 , pp. 469-472
    • Eddaoudi, M.1
  • 46
    • 0033581908 scopus 로고    scopus 로고
    • Design and synthesis of an exceptionally stable and highly porous metal–organic framework
    • This contribution revealed the first MOF with porosity and surface area exceeding previous records, and featuring a robust architecture
    • Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999). This contribution revealed the first MOF with porosity and surface area exceeding previous records, and featuring a robust architecture.
    • (1999) Nature , vol.402 , pp. 276-279
    • Li, H.1    Eddaoudi, M.2    O’Keeffe, M.3    Yaghi, O.M.4
  • 49
    • 84898001059 scopus 로고    scopus 로고
    • This paper shows that the availability of polyphenylene units as terminal ligands in MOFs provides for ultrahigh methane delivery
    • High methane storage capacity in aluminum metal–organic frameworks
    • Gándara, F., Furukawa, H., Lee, S. & Yaghi, O. M. High methane storage capacity in aluminum metal–organic frameworks. J. Am. Chem. Soc. 136, 5271–5274 (2014). This paper shows that the availability of polyphenylene units as terminal ligands in MOFs provides for ultrahigh methane delivery.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 5271-5274
    • Gándara, F.1    Furukawa, H.2    Lee, S.3    Yaghi, O.M.4
  • 50
    • 84945252985 scopus 로고    scopus 로고
    • 2 storage
    • 2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 13308-13318
    • Alezi, D.1
  • 51
    • 84875682619 scopus 로고    scopus 로고
    • Gram-scale, high-yield synthesis of a robust metal– organic framework for storing methane and other gases
    • Wilmer, C. E. et al. Gram-scale, high-yield synthesis of a robust metal– organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1158-1163
    • Wilmer, C.E.1
  • 52
    • 67949104844 scopus 로고    scopus 로고
    • 2(dhtp): The important role of open metal sites
    • 2(dhtp): the important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 4995-5000
    • Wu, H.1    Zhou, W.2    Yildirim, T.3
  • 53
    • 84863012812 scopus 로고    scopus 로고
    • Large-scale screening of hypothetical metal–organic frameworks
    • Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature Chem. 4, 83–89 (2012).
    • (2012) Nature Chem , vol.4 , pp. 83-89
    • Wilmer, C.E.1
  • 54
    • 43749104945 scopus 로고    scopus 로고
    • High-resolution carbon dioxide concentration record 650,000– 800,000 years before present
    • Luthi, D. et al. High-resolution carbon dioxide concentration record 650,000– 800,000 years before present. Nature 453, 379–382 (2008).
    • (2008) Nature , vol.453 , pp. 379-382
    • Luthi, D.1
  • 57
    • 4043100553 scopus 로고    scopus 로고
    • Stabilization wedges: Solving the climate problem for the next 50 years with current technologies
    • Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).
    • (2004) Science , vol.305 , pp. 968-972
    • Pacala, S.1    Socolow, R.2
  • 58
    • 67749111773 scopus 로고    scopus 로고
    • 2 capture and storage: Are we ready?
    • 2 capture and storage: are we ready? Energy Environ. Sci. 2, 449–458 (2009).
    • (2009) Energy Environ. Sci. , vol.2 , pp. 449-458
    • Orr, J.F.M.1
  • 59
    • 84856970819 scopus 로고    scopus 로고
    • Carbon dioxide capture in metal–organic frameworks
    • Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).
    • (2012) Chem. Rev. , vol.112 , pp. 724-781
    • Sumida, K.1
  • 60
    • 50249168225 scopus 로고    scopus 로고
    • Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores
    • Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 10870-10871
    • Caskey, S.R.1    Wong-Foy, A.G.2    Matzger, A.J.3
  • 61
    • 13444267405 scopus 로고    scopus 로고
    • Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units
    • Rosi, N. L. et al. Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005).
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 1504-1518
    • Rosi, N.L.1
  • 62
    • 84863012676 scopus 로고    scopus 로고
    • 2 by dual functionalization of a rht-type metal–organic framework
    • 2 by dual functionalization of a rht-type metal–organic framework. Angew. Chem. Int. Ed. 51, 1412–1415 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 1412-1415
    • Li, B.1
  • 63
    • 84874745873 scopus 로고    scopus 로고
    • 2 separation
    • 2 separation in the presence of water
    • 2 separation in the presence of water.
    • (2013) Nature , vol.495 , pp. 80-84
    • Nugent, P.1
  • 64
    • 84869464543 scopus 로고    scopus 로고
    • 2 uptake: A zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages
    • 2 uptake: a zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892–18895 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 18892-18895
    • Cui, P.1
  • 65
    • 0037202192 scopus 로고    scopus 로고
    • Photochemical removal of mercury from flue gas
    • Granite, E. J. & Pennline, H. W. Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. 41, 5470–5476 (2002).
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 5470-5476
    • Granite, E.J.1    Pennline, H.W.2
  • 66
    • 73949125283 scopus 로고    scopus 로고
    • From the cover: Highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites
    • Britt, D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. From the cover: highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites. Proc. Natl Acad. Sci. USA 106, 20637–20640 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 20637-20640
    • Britt, D.1    Furukawa, H.2    Wang, B.3    Glover, T.G.4    Yaghi, O.M.5
  • 68
    • 84903309490 scopus 로고    scopus 로고
    • Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water
    • 2 in the presence of water
    • 2 in the presence of water.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8863-8866
    • Fracaroli, A.M.1
  • 70
    • 85027934333 scopus 로고    scopus 로고
    • Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks
    • Nguyen, N. T. et al. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 53, 10645–10648 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 10645-10648
    • Nguyen, N.T.1
  • 71
    • 78049397686 scopus 로고    scopus 로고
    • 2 binding within an amine-functionalized nanoporous solid
    • 2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).
    • (2010) Science , vol.330 , pp. 650-653
    • Vaidhyanathan, R.1
  • 72
    • 84860337158 scopus 로고    scopus 로고
    • Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc)
    • McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 7056-7065
    • McDonald, T.M.1
  • 73
    • 84925263391 scopus 로고    scopus 로고
    • 2 in diamine-appended metal–organic frameworks
    • 2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).
    • (2015) Nature , vol.519 , pp. 303-308
    • McDonald, T.M.1
  • 74
    • 84861452693 scopus 로고    scopus 로고
    • Large-pore apertures in a series of metal–organic frameworks
    • Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).
    • (2012) Science , vol.336 , pp. 1018-1023
    • Deng, H.1
  • 75
    • 84864852255 scopus 로고    scopus 로고
    • Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions
    • Xiang, S. et al. Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions. Nature Commun. 3, 954 (2012).
    • (2012) Nature Commun , vol.3
    • Xiang, S.1
  • 76
    • 84874598396 scopus 로고    scopus 로고
    • 2 selective adsorption
    • 2 selective adsorption. Nature Commun. 4, 1538 (2013).
    • (2013) Nature Commun , vol.4
    • Li, J.-R.1
  • 77
    • 79961013573 scopus 로고    scopus 로고
    • Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
    • Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 3030-3040
    • Mason, J.A.1    Sumida, K.2    Herm, Z.R.3    Krishna, R.4    Long, J.R.5
  • 78
    • 66249084513 scopus 로고    scopus 로고
    • 2 Separation in zeolites and metal−organic frameworks
    • 2 Separation in zeolites and metal−organic frameworks. Langmuir 25, 5918–5926 (2009).
    • (2009) Langmuir , vol.25 , pp. 5918-5926
    • Liu, B.1    Smit, B.2
  • 79
    • 73249121017 scopus 로고    scopus 로고
    • Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach
    • Yazaydın, A. O. et al. Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 18198-18199
    • Yazaydın, A.O.1
  • 80
    • 79960011510 scopus 로고    scopus 로고
    • Towards rapid computational screening of metal– organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration
    • Wilmer, C. E. & Snurr, R. Q. Towards rapid computational screening of metal– organic frameworks for carbon dioxide capture: calculation of framework charges via charge equilibration. Chem. Eng. J. 171, 775–781 (2011).
    • (2011) Chem. Eng. J. , vol.171 , pp. 775-781
    • Wilmer, C.E.1    Snurr, R.Q.2
  • 81
    • 33747779360 scopus 로고    scopus 로고
    • The interaction of water with MOF-5 simulated by molecular dynamics
    • Greathouse, J. A. & Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678–10679 (2006).
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 10678-10679
    • Greathouse, J.A.1    Allendorf, M.D.2
  • 82
    • 76749097262 scopus 로고    scopus 로고
    • Multiple functional groups of varying ratios in metal–organic frameworks
    • Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).
    • (2010) Science , vol.327 , pp. 846-850
    • Deng, H.1
  • 83
    • 85027944537 scopus 로고    scopus 로고
    • “Heterogeneity within order” in metal–organic frameworks
    • Furukawa, H., Müller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 3417-3430
    • Furukawa, H.1    Müller, U.2    Yaghi, O.M.3
  • 84
    • 70450164080 scopus 로고    scopus 로고
    • Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques
    • Somorjai, G. A., Frei, H. & Park, J. Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131, 16589–16605 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 16589-16605
    • Somorjai, G.A.1    Frei, H.2    Park, J.Y.3
  • 85
    • 27944490359 scopus 로고    scopus 로고
    • Porous, crystalline, covalent organic frameworks
    • Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).
    • (2005) Science , vol.310 , pp. 1166-1170
    • Côté, A.P.1
  • 86
    • 67649588683 scopus 로고    scopus 로고
    • Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications
    • Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 8875-8883
    • Furukawa, H.1    Yaghi, O.M.2
  • 87
    • 84904741928 scopus 로고    scopus 로고
    • Metal–organic frameworks for artificial photosynthesis and photocatalysis
    • Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 5982-5993
    • Zhang, T.1    Lin, W.2
  • 89
    • 84859219977 scopus 로고    scopus 로고
    • 2 reduction
    • 2 reduction. Angew. Chem. Int. Ed. 51, 3364–3367 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 3364-3367
    • Fu, Y.1
  • 90
    • 80052091588 scopus 로고    scopus 로고
    • Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis
    • Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 13445-13454
    • Wang, C.1    Xie, Z.2    Dekrafft, K.E.3    Lin, W.4
  • 91
    • 84887669856 scopus 로고    scopus 로고
    • Construction of ultrastable porphyrin Zr metal– organic frameworks through linker elimination
    • Feng, D. et al. Construction of ultrastable porphyrin Zr metal– organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 17105-17110
    • Feng, D.1
  • 92
    • 84897584482 scopus 로고    scopus 로고
    • 2 under ambient conditions
    • 2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615–2619 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 2615-2619
    • Gao, W.-Y.1
  • 93
    • 84942909468 scopus 로고    scopus 로고
    • 2 reduction in water
    • 2 reduction in water. Science 349, 1208–1213 (2015).
    • (2015) Science , vol.349 , pp. 1208-1213
    • Lin, S.1
  • 94
    • 79958782267 scopus 로고    scopus 로고
    • A highly porous metal–organic framework: Structural transformations of a guest-free MOF depending on activation method and temperature
    • Park, H. J., Lim, D.-W., Yang, W. S., Oh, T.-R. & Suh, M. P. A highly porous metal–organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 17, 7251–7260 (2011).
    • (2011) Chem. Eur. J. , vol.17 , pp. 7251-7260
    • Park, H.J.1    Lim, D.-W.2    Yang, W.S.3    Oh, T.-R.4    Suh, M.P.5
  • 95
    • 0038128307 scopus 로고    scopus 로고
    • Reticular synthesis and the design of new materials
    • Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).
    • (2003) Nature , vol.423 , pp. 705-714
    • Yaghi, O.M.1
  • 96
    • 0034830906 scopus 로고    scopus 로고
    • Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks
    • Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).
    • (2001) Acc. Chem. Res. , vol.34 , pp. 319-330
    • Eddaoudi, M.1
  • 97
    • 84883066942 scopus 로고    scopus 로고
    • The chemistry and applications of metal–organic frameworks
    • Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
    • (2013) Science , vol.341
    • Furukawa, H.1    Cordova, K.E.2    O’Keeffe, M.3    Yaghi, O.M.4
  • 98
    • 0000888804 scopus 로고
    • Selective binding and removal of guests in a microporous metal–organic framework
    • Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).
    • (1995) Nature , vol.378 , pp. 703-706
    • Yaghi, O.M.1    Li, G.2    Li, H.3
  • 99
    • 70349542554 scopus 로고    scopus 로고
    • 2 capture
    • 2 capture. Science 325, 1652–1654 (2009).
    • (2009) Science , vol.325 , pp. 1652-1654
    • Rochelle, G.T.1
  • 100
    • 70349553629 scopus 로고    scopus 로고
    • Carbon capture and storage: How green can black be?
    • Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).
    • (2009) Science , vol.325 , pp. 1647-1652
    • Haszeldine, R.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.