-
2
-
-
85136543815
-
-
World Bank
-
CO2 Emissions (World Bank, 2015); http://go.nature.com/yLaqyF
-
(2015)
-
-
-
3
-
-
85136540094
-
-
America’s Energy Future: Technology and Transformation: Summary Edition (National Academies Press)
-
America’s Energy Future: Technology and Transformation: Summary Edition (National Academies Press, 2009); http://go.nature.com/YLvTAe This report provides information on potentials, barriers, costs and impacof energy supply and technologies.
-
(2009)
-
-
-
4
-
-
85136589299
-
-
China’s Energy and Carbon Emissions Outlook to 2050 (China Energy Group, Lawrence Berkeley National Laboratory
-
Zhou, N. et al. China’s Energy and Carbon Emissions Outlook to 2050 (China Energy Group, Lawrence Berkeley National Laboratory, 2011); http://go.nature.com/toqvwR
-
(2011)
-
-
Zhou, N.1
-
6
-
-
85136600283
-
-
Beyond 2020 (US Department of Energy
-
Basic Research Needs for Carbon Capture: Beyond 2020 (US Department of Energy, 2010); http://go.nature.com/1bM9qj
-
(2010)
-
-
-
9
-
-
85136601319
-
-
An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies (Clean Energy States Alliance
-
Lipman, T. An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies (Clean Energy States Alliance, 2011); http://go.nature.com/p2ZuT4
-
(2011)
-
-
Lipman, T.1
-
10
-
-
0035891289
-
Hydrogen-storage materials for mobile applications
-
Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).
-
(2001)
Nature
, vol.414
, pp. 353-358
-
-
Schlapbach, L.1
Zuttel, A.2
-
11
-
-
79959395297
-
-
Hydrogen Storage (US Department of Energy, 2015); http://go.nature.com/ispE6Q
-
(2015)
Hydrogen Storage
-
-
-
12
-
-
85136579945
-
Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles
-
Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (USDRIVE, 2015); http://go.nature.com/EHHdZ5
-
(2015)
USDRIVE
-
-
-
13
-
-
85136580196
-
Mercedes-Benz F125 concept: Mercedes’ dream of a 2025 S-class takes flight
-
21 October
-
Zoellter, J. Mercedes-Benz F125 concept: Mercedes’ dream of a 2025 S-class takes flight. Car and Driver (21 October 2015); http://go.nature.com/kFaC3e
-
(2015)
Car and Driver
-
-
Zoellter, J.1
-
14
-
-
85136567603
-
Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence
-
Sudik, A. et al. Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence (HSECoE, 2015); http://go.nature. com/SrJePp
-
(2015)
Hsecoe
-
-
Sudik, A.1
-
15
-
-
53249136449
-
2 uptake by “close-packing” alignment of open copper sites in metal–organic frameworks
-
2 uptake by “close-packing” alignment of open copper sites in metal–organic frameworks. Angew. Chem. Int. Ed. 47, 7263–7266 (2008).
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 7263-7266
-
-
Wang, X.-S.1
-
16
-
-
84863011092
-
Hydrogen storage in metal– organic frameworks
-
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal– organic frameworks. Chem. Rev. 112, 782–835 (2012).
-
(2012)
Chem. Rev.
, vol.112
, pp. 782-835
-
-
Suh, M.P.1
Park, H.J.2
Prasad, T.K.3
Lim, D.-W.4
-
17
-
-
31944444897
-
Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks
-
Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 1304-1315
-
-
Rowsell, J.L.C.1
Yaghi, O.M.2
-
18
-
-
23044451308
-
Strategies for hydrogen storage in metal– organic frameworks
-
This paper highlights different strategies for hydrogen storage in MOFs being used today and has led to room temperature uptake of 2–3 wt% and 6 wt% at 77 K
-
Rowsell, J. L. C. & Yaghi, O. M. Strategies for hydrogen storage in metal– organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005). This paper highlights different strategies for hydrogen storage in MOFs being used today and has led to room temperature uptake of 2–3 wt% and 6 wt% at 77 K.
-
(2005)
Angew. Chem. Int. Ed
, vol.44
, pp. 4670-4679
-
-
Rowsell, J.L.C.1
Yaghi, O.M.2
-
19
-
-
67749114491
-
Post-synthesis alkoxide formation within metal−organic framework materials: A strategy for incorporating highly coordinatively unsaturated metal ions
-
Mulfort, K. L., Farha, O. K., Stern, C. L., Sarjeant, A. A. & Hupp, J. T. Post-synthesis alkoxide formation within metal−organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131, 3866–3868 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3866-3868
-
-
Mulfort, K.L.1
Farha, O.K.2
Stern, C.L.3
Sarjeant, A.A.4
Hupp, J.T.5
-
20
-
-
31444431971
-
Significantly enhanced hydrogen storage in metal−organic frameworks via spillover
-
Li, Y. & Yang, R. T. Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006).
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 726-727
-
-
Li, Y.1
Yang, R.T.2
-
21
-
-
1142298818
-
A route to high surface area, porosity and inclusion of large molecules in crystals
-
This contribution details a strategy and interpretation for using exposed six-membered rings to make ultrahigh-porosity MOFs
-
Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004). This contribution details a strategy and interpretation for using exposed six-membered rings to make ultrahigh-porosity MOFs.
-
(2004)
Nature
, vol.427
, pp. 523-527
-
-
Chae, H.K.1
-
22
-
-
34547516632
-
Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks
-
Furukawa, H., Miller, M. A. & Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks. J. Mater. Chem. 17, 3197–3204 (2007).
-
(2007)
J. Mater. Chem.
, vol.17
, pp. 3197-3204
-
-
Furukawa, H.1
Miller, M.A.2
Yaghi, O.M.3
-
23
-
-
0345171601
-
Polycatenation, polythreading and polyknotting in coordination network chemistry
-
Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).
-
(2003)
Coord. Chem. Rev.
, vol.246
, pp. 247-289
-
-
Carlucci, L.1
Ciani, G.2
Proserpio, D.M.3
-
24
-
-
77954858281
-
Ultrahigh porosity in metal–organic frameworks
-
Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).
-
(2010)
Science
, vol.329
, pp. 424-428
-
-
Furukawa, H.1
-
25
-
-
84895747193
-
A new metal–organic framework with ultra-high surface area
-
Grunker, R. et al. A new metal–organic framework with ultra-high surface area. Chem. Commun. 50, 3450–3452 (2014).
-
(2014)
Chem. Commun.
, vol.50
, pp. 3450-3452
-
-
Grunker, R.1
-
26
-
-
0034798231
-
4 paddle-wheel building blocks
-
4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 4368-4369
-
-
Eddaoudi, M.1
-
27
-
-
0035820889
-
Nanoballs: Nanoscale faceted polyhedra with large windows and cavities
-
Moulton, B., Lu, J., Mondal, A. & Zaworotko, M. J. Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem. Commun. 9, 863–864 (2001).
-
(2001)
Chem. Commun.
, Issue.9
, pp. 863-864
-
-
Moulton, B.1
Lu, J.2
Mondal, A.3
Zaworotko, M.J.4
-
28
-
-
39049121414
-
Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks
-
2 adsorption
-
2 adsorption.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 1833-1835
-
-
Nouar, F.1
-
29
-
-
77950209664
-
2 adsorption capacities and neutron powder diffraction studies
-
2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092–4094 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 4092-4094
-
-
Yan, Y.1
-
30
-
-
77954858634
-
An isoreticular series of metal– organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity
-
Yuan, D., Zhao, D., Sun, D. & Zhou, H.-C. An isoreticular series of metal– organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010).
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 5357-5361
-
-
Yuan, D.1
Zhao, D.2
Sun, D.3
Zhou, H.-C.4
-
31
-
-
78049347869
-
De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities
-
Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).
-
(2010)
Nature Chem
, vol.2
, pp. 944-948
-
-
Farha, O.K.1
-
32
-
-
84862534248
-
Designing higher surface area metal–organic frameworks: Are triple bonds better than phenyls?
-
Farha, O. K. et al. Designing higher surface area metal–organic frameworks: are triple bonds better than phenyls? J. Am. Chem. Soc. 134, 9860–9863 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 9860-9863
-
-
Farha, O.K.1
-
33
-
-
84866377075
-
Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit?
-
This paper reports a MOF that currently holds the world record with respect to BET surface area
-
Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012). This paper reports a MOF that currently holds the world record with respect to BET surface area.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 15016-15021
-
-
Farha, O.K.1
-
34
-
-
84889246368
-
Programmed pore architectures in modular quaternary metal–organic frameworks
-
Liu, L., Konstas, K., Hill, M. R. & Telfer, S. G. Programmed pore architectures in modular quaternary metal–organic frameworks. J. Am. Chem. Soc. 135, 17731–17734 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 17731-17734
-
-
Liu, L.1
Konstas, K.2
Hill, M.R.3
Telfer, S.G.4
-
35
-
-
84884843119
-
A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets
-
Schoedel, A., Boyette, W., Wojtas, L., Eddaoudi, M. & Zaworotko, M. J. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets. J. Am. Chem. Soc. 135, 14016–14019 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 14016-14019
-
-
Schoedel, A.1
Boyette, W.2
Wojtas, L.3
Eddaoudi, M.4
Zaworotko, M.J.5
-
36
-
-
84874612464
-
The asc trinodal platform: Two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks
-
Schoedel, A. et al. The asc trinodal platform: two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks. Angew. Chem. Int. Ed. 52, 2902–2905 (2013).
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 2902-2905
-
-
Schoedel, A.1
-
37
-
-
33745445413
-
Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks
-
Frost, H., Düren, T. & Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006).
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 9565-9570
-
-
Frost, H.1
Düren, T.2
Snurr, R.Q.3
-
38
-
-
31544433946
-
Understanding hydrogen adsorption in metal−organic frameworks with open metal sites: A computational study
-
Yang, Q. & Zhong, C. Understanding hydrogen adsorption in metal−organic frameworks with open metal sites: a computational study. J. Phys. Chem. B 110, 655–658 (2006).
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 655-658
-
-
Yang, Q.1
Zhong, C.2
-
39
-
-
69949181506
-
Selective gas adsorption in a magnesium-based metal–organic framework
-
Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metal–organic framework. Chem. Commun. 36, 5436–5438 (2009).
-
(2009)
Chem. Commun.
, Issue.36
, pp. 5436-5438
-
-
Cheon, Y.E.1
Park, J.2
Suh, M.P.3
-
40
-
-
77950340888
-
Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks
-
Bae, Y.-S. & Snurr, R. Q. Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Micropor. Mesopor. Mater. 132, 300–303 (2010).
-
(2010)
Micropor. Mesopor. Mater.
, vol.132
, pp. 300-303
-
-
Bae, Y.-S.1
Snurr, R.Q.2
-
41
-
-
84924749677
-
Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage
-
Ren, J., Langmi, H. W., North, B. C. & Mathe, M. Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39, 607–620 (2015).
-
(2015)
Int. J. Energy Res.
, vol.39
, pp. 607-620
-
-
Ren, J.1
Langmi, H.W.2
North, B.C.3
Mathe, M.4
-
43
-
-
84882270355
-
Methane storage in metal–organic frameworks: Current records, surprise findings, and challenges
-
Peng, Y. et al. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 11887-11894
-
-
Peng, Y.1
-
44
-
-
84926500964
-
The materials genome in action: Identifying the performance limits for methane storage
-
Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015).
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1190-1199
-
-
Simon, C.M.1
-
45
-
-
0037127013
-
Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage
-
This publication describes use of the isoreticular principle in making MOFs and designing their interior for methane storage
-
Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). This publication describes use of the isoreticular principle in making MOFs and designing their interior for methane storage.
-
(2002)
Science
, vol.295
, pp. 469-472
-
-
Eddaoudi, M.1
-
46
-
-
0033581908
-
Design and synthesis of an exceptionally stable and highly porous metal–organic framework
-
This contribution revealed the first MOF with porosity and surface area exceeding previous records, and featuring a robust architecture
-
Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999). This contribution revealed the first MOF with porosity and surface area exceeding previous records, and featuring a robust architecture.
-
(1999)
Nature
, vol.402
, pp. 276-279
-
-
Li, H.1
Eddaoudi, M.2
O’Keeffe, M.3
Yaghi, O.M.4
-
49
-
-
84898001059
-
This paper shows that the availability of polyphenylene units as terminal ligands in MOFs provides for ultrahigh methane delivery
-
High methane storage capacity in aluminum metal–organic frameworks
-
Gándara, F., Furukawa, H., Lee, S. & Yaghi, O. M. High methane storage capacity in aluminum metal–organic frameworks. J. Am. Chem. Soc. 136, 5271–5274 (2014). This paper shows that the availability of polyphenylene units as terminal ligands in MOFs provides for ultrahigh methane delivery.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 5271-5274
-
-
Gándara, F.1
Furukawa, H.2
Lee, S.3
Yaghi, O.M.4
-
50
-
-
84945252985
-
2 storage
-
2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 13308-13318
-
-
Alezi, D.1
-
51
-
-
84875682619
-
Gram-scale, high-yield synthesis of a robust metal– organic framework for storing methane and other gases
-
Wilmer, C. E. et al. Gram-scale, high-yield synthesis of a robust metal– organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1158-1163
-
-
Wilmer, C.E.1
-
52
-
-
67949104844
-
2(dhtp): The important role of open metal sites
-
2(dhtp): the important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 4995-5000
-
-
Wu, H.1
Zhou, W.2
Yildirim, T.3
-
53
-
-
84863012812
-
Large-scale screening of hypothetical metal–organic frameworks
-
Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature Chem. 4, 83–89 (2012).
-
(2012)
Nature Chem
, vol.4
, pp. 83-89
-
-
Wilmer, C.E.1
-
54
-
-
43749104945
-
High-resolution carbon dioxide concentration record 650,000– 800,000 years before present
-
Luthi, D. et al. High-resolution carbon dioxide concentration record 650,000– 800,000 years before present. Nature 453, 379–382 (2008).
-
(2008)
Nature
, vol.453
, pp. 379-382
-
-
Luthi, D.1
-
57
-
-
4043100553
-
Stabilization wedges: Solving the climate problem for the next 50 years with current technologies
-
Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).
-
(2004)
Science
, vol.305
, pp. 968-972
-
-
Pacala, S.1
Socolow, R.2
-
58
-
-
67749111773
-
2 capture and storage: Are we ready?
-
2 capture and storage: are we ready? Energy Environ. Sci. 2, 449–458 (2009).
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 449-458
-
-
Orr, J.F.M.1
-
59
-
-
84856970819
-
Carbon dioxide capture in metal–organic frameworks
-
Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).
-
(2012)
Chem. Rev.
, vol.112
, pp. 724-781
-
-
Sumida, K.1
-
60
-
-
50249168225
-
Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores
-
Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 10870-10871
-
-
Caskey, S.R.1
Wong-Foy, A.G.2
Matzger, A.J.3
-
61
-
-
13444267405
-
Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units
-
Rosi, N. L. et al. Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005).
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 1504-1518
-
-
Rosi, N.L.1
-
62
-
-
84863012676
-
2 by dual functionalization of a rht-type metal–organic framework
-
2 by dual functionalization of a rht-type metal–organic framework. Angew. Chem. Int. Ed. 51, 1412–1415 (2012).
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 1412-1415
-
-
Li, B.1
-
63
-
-
84874745873
-
2 separation
-
2 separation in the presence of water
-
2 separation in the presence of water.
-
(2013)
Nature
, vol.495
, pp. 80-84
-
-
Nugent, P.1
-
64
-
-
84869464543
-
2 uptake: A zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages
-
2 uptake: a zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892–18895 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 18892-18895
-
-
Cui, P.1
-
65
-
-
0037202192
-
Photochemical removal of mercury from flue gas
-
Granite, E. J. & Pennline, H. W. Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. 41, 5470–5476 (2002).
-
(2002)
Ind. Eng. Chem. Res.
, vol.41
, pp. 5470-5476
-
-
Granite, E.J.1
Pennline, H.W.2
-
66
-
-
73949125283
-
From the cover: Highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites
-
Britt, D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. From the cover: highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites. Proc. Natl Acad. Sci. USA 106, 20637–20640 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 20637-20640
-
-
Britt, D.1
Furukawa, H.2
Wang, B.3
Glover, T.G.4
Yaghi, O.M.5
-
68
-
-
84903309490
-
Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water
-
2 in the presence of water
-
2 in the presence of water.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 8863-8866
-
-
Fracaroli, A.M.1
-
70
-
-
85027934333
-
Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks
-
Nguyen, N. T. et al. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 53, 10645–10648 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 10645-10648
-
-
Nguyen, N.T.1
-
71
-
-
78049397686
-
2 binding within an amine-functionalized nanoporous solid
-
2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).
-
(2010)
Science
, vol.330
, pp. 650-653
-
-
Vaidhyanathan, R.1
-
72
-
-
84860337158
-
Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc)
-
McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 7056-7065
-
-
McDonald, T.M.1
-
73
-
-
84925263391
-
2 in diamine-appended metal–organic frameworks
-
2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).
-
(2015)
Nature
, vol.519
, pp. 303-308
-
-
McDonald, T.M.1
-
74
-
-
84861452693
-
Large-pore apertures in a series of metal–organic frameworks
-
Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).
-
(2012)
Science
, vol.336
, pp. 1018-1023
-
-
Deng, H.1
-
75
-
-
84864852255
-
Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions
-
Xiang, S. et al. Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions. Nature Commun. 3, 954 (2012).
-
(2012)
Nature Commun
, vol.3
-
-
Xiang, S.1
-
76
-
-
84874598396
-
2 selective adsorption
-
2 selective adsorption. Nature Commun. 4, 1538 (2013).
-
(2013)
Nature Commun
, vol.4
-
-
Li, J.-R.1
-
77
-
-
79961013573
-
Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
-
Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3030-3040
-
-
Mason, J.A.1
Sumida, K.2
Herm, Z.R.3
Krishna, R.4
Long, J.R.5
-
78
-
-
66249084513
-
2 Separation in zeolites and metal−organic frameworks
-
2 Separation in zeolites and metal−organic frameworks. Langmuir 25, 5918–5926 (2009).
-
(2009)
Langmuir
, vol.25
, pp. 5918-5926
-
-
Liu, B.1
Smit, B.2
-
79
-
-
73249121017
-
Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach
-
Yazaydın, A. O. et al. Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 18198-18199
-
-
Yazaydın, A.O.1
-
80
-
-
79960011510
-
Towards rapid computational screening of metal– organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration
-
Wilmer, C. E. & Snurr, R. Q. Towards rapid computational screening of metal– organic frameworks for carbon dioxide capture: calculation of framework charges via charge equilibration. Chem. Eng. J. 171, 775–781 (2011).
-
(2011)
Chem. Eng. J.
, vol.171
, pp. 775-781
-
-
Wilmer, C.E.1
Snurr, R.Q.2
-
81
-
-
33747779360
-
The interaction of water with MOF-5 simulated by molecular dynamics
-
Greathouse, J. A. & Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678–10679 (2006).
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 10678-10679
-
-
Greathouse, J.A.1
Allendorf, M.D.2
-
82
-
-
76749097262
-
Multiple functional groups of varying ratios in metal–organic frameworks
-
Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).
-
(2010)
Science
, vol.327
, pp. 846-850
-
-
Deng, H.1
-
83
-
-
85027944537
-
“Heterogeneity within order” in metal–organic frameworks
-
Furukawa, H., Müller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 3417-3430
-
-
Furukawa, H.1
Müller, U.2
Yaghi, O.M.3
-
84
-
-
70450164080
-
Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques
-
Somorjai, G. A., Frei, H. & Park, J. Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131, 16589–16605 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 16589-16605
-
-
Somorjai, G.A.1
Frei, H.2
Park, J.Y.3
-
85
-
-
27944490359
-
Porous, crystalline, covalent organic frameworks
-
Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).
-
(2005)
Science
, vol.310
, pp. 1166-1170
-
-
Côté, A.P.1
-
86
-
-
67649588683
-
Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications
-
Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 8875-8883
-
-
Furukawa, H.1
Yaghi, O.M.2
-
87
-
-
84904741928
-
Metal–organic frameworks for artificial photosynthesis and photocatalysis
-
Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 5982-5993
-
-
Zhang, T.1
Lin, W.2
-
89
-
-
84859219977
-
2 reduction
-
2 reduction. Angew. Chem. Int. Ed. 51, 3364–3367 (2012).
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 3364-3367
-
-
Fu, Y.1
-
90
-
-
80052091588
-
Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis
-
Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 13445-13454
-
-
Wang, C.1
Xie, Z.2
Dekrafft, K.E.3
Lin, W.4
-
91
-
-
84887669856
-
Construction of ultrastable porphyrin Zr metal– organic frameworks through linker elimination
-
Feng, D. et al. Construction of ultrastable porphyrin Zr metal– organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 17105-17110
-
-
Feng, D.1
-
92
-
-
84897584482
-
2 under ambient conditions
-
2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615–2619 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 2615-2619
-
-
Gao, W.-Y.1
-
93
-
-
84942909468
-
2 reduction in water
-
2 reduction in water. Science 349, 1208–1213 (2015).
-
(2015)
Science
, vol.349
, pp. 1208-1213
-
-
Lin, S.1
-
94
-
-
79958782267
-
A highly porous metal–organic framework: Structural transformations of a guest-free MOF depending on activation method and temperature
-
Park, H. J., Lim, D.-W., Yang, W. S., Oh, T.-R. & Suh, M. P. A highly porous metal–organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 17, 7251–7260 (2011).
-
(2011)
Chem. Eur. J.
, vol.17
, pp. 7251-7260
-
-
Park, H.J.1
Lim, D.-W.2
Yang, W.S.3
Oh, T.-R.4
Suh, M.P.5
-
95
-
-
0038128307
-
Reticular synthesis and the design of new materials
-
Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).
-
(2003)
Nature
, vol.423
, pp. 705-714
-
-
Yaghi, O.M.1
-
96
-
-
0034830906
-
Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks
-
Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).
-
(2001)
Acc. Chem. Res.
, vol.34
, pp. 319-330
-
-
Eddaoudi, M.1
-
97
-
-
84883066942
-
The chemistry and applications of metal–organic frameworks
-
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
-
(2013)
Science
, vol.341
-
-
Furukawa, H.1
Cordova, K.E.2
O’Keeffe, M.3
Yaghi, O.M.4
-
98
-
-
0000888804
-
Selective binding and removal of guests in a microporous metal–organic framework
-
Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).
-
(1995)
Nature
, vol.378
, pp. 703-706
-
-
Yaghi, O.M.1
Li, G.2
Li, H.3
-
99
-
-
70349542554
-
2 capture
-
2 capture. Science 325, 1652–1654 (2009).
-
(2009)
Science
, vol.325
, pp. 1652-1654
-
-
Rochelle, G.T.1
-
100
-
-
70349553629
-
Carbon capture and storage: How green can black be?
-
Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).
-
(2009)
Science
, vol.325
, pp. 1647-1652
-
-
Haszeldine, R.S.1
|