메뉴 건너뛰기




Volumn 80, Issue , 2017, Pages 1-25

Feature selection with the r package mxm: Discovering statistically equivalent feature subsets

Author keywords

Constraint based algorithms; Feature selection; Multiple predictive signatures

Indexed keywords


EID: 85089684667     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/JSS.V080.I07     Document Type: Article
Times cited : (78)

References (46)
  • 1
    • 76749137632 scopus 로고    scopus 로고
    • Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation
    • Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD (2010). “Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation.” Journal of Machine Learning Research, 11, 171–234.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, CF1    Statnikov, A2    Tsamardinos, I3    Mani, S4    Koutsoukos, XD5
  • 3
    • 72249093876 scopus 로고    scopus 로고
    • R package version 1.15.6
    • Barton K (2016). MuMIn: Multi-Model Inference. R package version 1.15.6, URL https://CRAN.R-project.org/package=MuMIn.
    • (2016) MuMIn: Multi-Model Inference
    • Barton, K1
  • 5
    • 0030613470 scopus 로고    scopus 로고
    • Model Selection: An Integral Part of Inference
    • Buckland ST, Burnham KP, Augustin NH (1997). “Model Selection: An Integral Part of Inference.” Biometrics, pp. 603–618. doi:10.2307/2533961.
    • (1997) Biometrics , pp. 603-618
    • Buckland, ST1    Burnham, KP2    Augustin, NH3
  • 6
    • 77955157376 scopus 로고    scopus 로고
    • glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models
    • Calcagno V, de Mazancourt C (2010). “glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models.” Journal of Statistical Software, 34(12), 1–29. doi:10.18637/jss.v034.i12.
    • (2010) Journal of Statistical Software , vol.34 , Issue.12 , pp. 1-29
    • Calcagno, V1    de Mazancourt, C2
  • 8
    • 0000336139 scopus 로고
    • Regression Models and Life-Tables
    • Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society B, 34, 187–220. doi:10.2307/2985181.
    • (1972) Journal of the Royal Statistical Society B , vol.34 , pp. 187-220
    • Cox, DR1
  • 10
    • 33646023117 scopus 로고    scopus 로고
    • An Introduction to ROC Analysis
    • Fawcett T (2006). “An Introduction to ROC Analysis.” Pattern Recognition Letters, 27, 861–874. doi:10.1016/j.patrec.2005.10.010.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T1
  • 11
    • 0040481048 scopus 로고
    • The Distribution of the Partial Correlation Coefficient
    • Fisher RA (1924). “The Distribution of the Partial Correlation Coefficient.” Metron, 3, 329–332.
    • (1924) Metron , vol.3 , pp. 329-332
    • Fisher, RA1
  • 12
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–13. doi:10. 18637/jss.v033.i01.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-13
    • Friedman, J1    Hastie, T2    Tibshirani, R3
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • Guyon I, Elisseeff A (2003). “An Introduction to Variable and Feature Selection.” Journal of Machine Learning Research, 3, 1157–1182. doi:10.1162/153244303322753616.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I1    Elisseeff, A2
  • 16
    • 84971298811 scopus 로고    scopus 로고
    • T-Recs: Stable Selection of Dynamically Formed Groups of Features with Application to Prediction of Clinical Outcomes
    • Huang GT, Tsamardinos I, Raghu V, Kaminski N, Benos PV (2015). “T-Recs: Stable Selection of Dynamically Formed Groups of Features with Application to Prediction of Clinical Outcomes.” In Pacific Symposium on Biocomputing (PSB).
    • (2015) Pacific Symposium on Biocomputing (PSB)
    • Huang, GT1    Tsamardinos, I2    Raghu, V3    Kaminski, N4    Benos, PV5
  • 18
    • 84888087862 scopus 로고    scopus 로고
    • Scalable Strategies for Computing with Massive Data
    • Kane MJ, Emerson J, Weston S (2013). “Scalable Strategies for Computing with Massive Data.” Journal of Statistical Software, 55(14), 1–19. doi:10.18637/jss.v055.i14.
    • (2013) Journal of Statistical Software , vol.55 , Issue.14 , pp. 1-19
    • Kane, MJ1    Emerson, J2    Weston, S3
  • 19
    • 77049105737 scopus 로고    scopus 로고
    • R package version 5.33
    • Koenker R (2017). quantreg: Quantile Regression. R package version 5.33, URL https://CRAN.R-project.org/package=quantreg.
    • (2017) quantreg: Quantile Regression
    • Koenker, R1
  • 21
    • 84902163698 scopus 로고    scopus 로고
    • Biomarker Signature Identification in “Omics” Data with Multi-Class Outcome
    • Lagani V, Kortas G, Tsamardinos I (2013). “Biomarker Signature Identification in “Omics” Data with Multi-Class Outcome.” Computational and Structural Biotechnology Journal, 6, e201303004. doi:10.5936/csbj.201303004.
    • (2013) Computational and Structural Biotechnology Journal , vol.6 , pp. e201303004
    • Lagani, V1    Kortas, G2    Tsamardinos, I3
  • 22
    • 77955035481 scopus 로고    scopus 로고
    • Structure-Based Variable Selection for Survival Data
    • Lagani V, Tsamardinos I (2010). “Structure-Based Variable Selection for Survival Data.” Bioinformatics, 26(15), 1887–1894.
    • (2010) Bioinformatics , vol.26 , Issue.15 , pp. 1887-1894
    • Lagani, V1    Tsamardinos, I2
  • 23
    • 77958108547 scopus 로고    scopus 로고
    • The Specification of Causal Models with Tetrad IV: A Review
    • Landsheer JA (2010). “The Specification of Causal Models with Tetrad IV: A Review.” Structural Equation Modeling, 17, 703–711. doi:10.1080/10705511.2010.510074.
    • (2010) Structural Equation Modeling , vol.17 , pp. 703-711
    • Landsheer, JA1
  • 25
    • 33747163541 scopus 로고    scopus 로고
    • High-Dimensional Graphs and Variable Selection with the Lasso
    • Meinshausen N, Bühlmann P (2006). “High-Dimensional Graphs and Variable Selection with the Lasso.” The Annals of Statistics, 34(3), 1436–1462. doi:10.1214/009053606000000281.
    • (2006) The Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N1    Bühlmann, P2
  • 28
    • 84863304598 scopus 로고    scopus 로고
    • R Core Team R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
    • (2017) R: A Language and Environment for Statistical Computing
  • 31
  • 32
    • 85089674955 scopus 로고    scopus 로고
    • breastCancerVDX: Gene Expression Datasets Published by Wang et al. (2005) and Minn et al. (2007) (VDX). R package version 1.6.0
    • Schroeder M, Haibe-Kains B, Culhane A, Sotiriou C, Bontempi G, Quackenbush J (2011). breastCancerVDX: Gene Expression Datasets Published by Wang et al. (2005) and Minn et al. (2007) (VDX). R package version 1.6.0, URL https://www.bioconductor.org/packages/release/data/experiment/html/breastCancerVDX.html.
    • (2011)
    • Schroeder, M1    Haibe-Kains, B2    Culhane, A3    Sotiriou, C4    Bontempi, G5    Quackenbush, J6
  • 33
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian Networks with the bnlearn R Package
    • Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of Statistical Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.
    • (2010) Journal of Statistical Software , vol.35 , Issue.3 , pp. 1-22
    • Scutari, M1
  • 36
    • 77955493761 scopus 로고    scopus 로고
    • Analysis and Computational Dissection of Molecular Signature Multiplicity
    • Statnikov A, Aliferis CF (2010). “Analysis and Computational Dissection of Molecular Signature Multiplicity.” PLoS Computational Biology, 6(5), e1000790. doi:10.1371/journal. pcbi.1000790.
    • (2010) PLoS Computational Biology , vol.6 , Issue.5 , pp. e1000790
    • Statnikov, A1    Aliferis, CF2
  • 38
    • 0003876171 scopus 로고    scopus 로고
    • The MathWorks Inc Version R2014b. Natick, Massachusetts
    • The MathWorks Inc (2014). MATLAB – The Language of Technical Computing, Version R2014b. Natick, Massachusetts. URL http://www.mathworks.com/products/matlab/.
    • (2014) MATLAB – The Language of Technical Computing
  • 41
    • 33746035971 scopus 로고    scopus 로고
    • The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm
    • Tsamardinos I, Brown LE, Aliferis CF (2006). “The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm.” Machine Learning, 65(1), 31–78. doi:10.1007/s10994-006-6889-7.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I1    Brown, LE2    Aliferis, CF3
  • 44
    • 84900529400 scopus 로고    scopus 로고
    • Performance-Estimation Properties of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter Optimization
    • A Likas, K Blekas, D Kalles (eds), Springer-Verlag
    • Tsamardinos I, Rakhshani A, Lagani V (2014). “Performance-Estimation Properties of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter Optimization.” In A Likas, K Blekas, D Kalles (eds.), Artificial Intel ligence: Methods and Applications, volume 8445 of Lecture Notes in Computer Science, pp. 1–14. Springer-Verlag. doi: 10.1007/978-3-319-07064-3_1.
    • (2014) Artificial Intel ligence: Methods and Applications, volume 8445 of Lecture Notes in Computer Science , pp. 1-14
    • Tsamardinos, I1    Rakhshani, A2    Lagani, V3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.