메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Deep variational Bayes filters: Unsupervised learning of state space models from raw data

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; STATE SPACE METHODS; STOCHASTIC SYSTEMS; UNSUPERVISED LEARNING;

EID: 85088231999     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (213)

References (25)
  • 3
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Springer
    • Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pp. 177-186. Springer, 2010.
    • (2010) Proceedings of COMPSTAT'2010 , pp. 177-186
    • Bottou, L.1
  • 7
    • 0034170950 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Zoubin Ghahramani and Geoffrey E Hinton. Variational learning for switching state-space models. Neural computation, 12(4):831-864, 2000.
    • (2000) Neural Computation , vol.12 , Issue.4 , pp. 831-864
    • Ghahramani, Z.1    Hinton, G.E.2
  • 10
    • 79551487646 scopus 로고    scopus 로고
    • Approximate riemannian conjugate gradient learning for fixed-form variational bayes
    • Nov
    • Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, and Juha Karhunen. Approximate riemannian conjugate gradient learning for fixed-form variational bayes. Journal of Machine Learning Research, 11(Nov):3235-3268, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3235-3268
    • Honkela, A.1    Raiko, T.2    Kuusela, M.3    Tornio, M.4    Karhunen, J.5
  • 12
    • 0031347068 scopus 로고    scopus 로고
    • New extension of the kalman filter to nonlinear systems
    • International Society for Optics and Photonics
    • Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to nonlinear systems. In AeroSense'97, pp. 182-193. International Society for Optics and Photonics, 1997.
    • (1997) AeroSense'97 , pp. 182-193
    • Julier, S.J.1    Uhlmann, J.K.2
  • 13
    • 85024423711 scopus 로고
    • New results in linear filtering and prediction theory
    • Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction theory. Journal of basic engineering, 83(1):95-108, 1961.
    • (1961) Journal of Basic Engineering , vol.83 , Issue.1 , pp. 95-108
    • Kalman, R.E.1    Bucy, R.S.2
  • 15
    • 79951555580 scopus 로고    scopus 로고
    • Learning gp-bayesfilters via Gaussian process latent variable models
    • Jonathan Ko and Dieter Fox. Learning gp-bayesfilters via gaussian process latent variable models. Autonomous Robots, 30(1):3-23, 2011.
    • (2011) Autonomous Robots , vol.30 , Issue.1 , pp. 3-23
    • Ko, J.1    Fox, D.2
  • 18
    • 84947071478 scopus 로고    scopus 로고
    • Statistical inference for dynamical systems: A review
    • Kevin McGoff, Sayan Mukherjee, Natesh Pillai, et al. Statistical inference for dynamical systems: A review. Statistics Surveys, 9:209-252, 2015.
    • (2015) Statistics Surveys , vol.9 , pp. 209-252
    • McGoff, K.1    Mukherjee, S.2    Pillai, N.3
  • 19
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Tony Jebara and Eric Xing eds, JMLR Workshop and Conference Proceedings
    • Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In Tony Jebara and Eric P. Xing (eds.), Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1278-1286. JMLR Workshop and Conference Proceedings, 2014. URL http://jmlr.org/proceedings/papers/v32/rezende14.pdf.
    • (2014) Proceedings of the 31st International Conference on Machine Learning (ICML-14) , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 21
    • 80052392279 scopus 로고    scopus 로고
    • Learning multilevel distributed representations for high-dimensional sequences
    • Marina Meila and Xiaotong Shen eds, Journal of Machine Learning Research Proceedings Track
    • Ilya Sutskever and Geoffrey E. Hinton. Learning multilevel distributed representations for high-dimensional sequences. In Marina Meila and Xiaotong Shen (eds.), Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07), volume 2, pp. 548-555. Journal of Machine Learning Research - Proceedings Track, 2007. URL http://jmlr.csail.mit.edu/proceedings/papers/v2/sutskever07a/sutskever07a.pdf.
    • (2007) Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07) , vol.2 , pp. 548-555
    • Sutskever, I.1    Hinton, G.E.2
  • 24
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • Harri Valpola and Juha Karhunen. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural computation, 14(11):2647-2692, 2002.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2647-2692
    • Valpola, H.1    Karhunen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.