-
3
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Springer
-
Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pp. 177-186. Springer, 2010.
-
(2010)
Proceedings of COMPSTAT'2010
, pp. 177-186
-
-
Bottou, L.1
-
4
-
-
84986292012
-
-
CoRR, abs/1506.02216
-
Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua Bengio. A recurrent latent variable model for sequential data. CoRR, abs/1506.02216, 2015. URL http://arxiv.org/abs/1506.02216.
-
(2015)
A Recurrent Latent Variable Model for Sequential Data
-
-
Chung, J.1
Kastner, K.2
Dinh, L.3
Goel, K.4
Courville, A.C.5
Bengio, Y.6
-
7
-
-
0034170950
-
Variational learning for switching state-space models
-
Zoubin Ghahramani and Geoffrey E Hinton. Variational learning for switching state-space models. Neural computation, 12(4):831-864, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.4
, pp. 831-864
-
-
Ghahramani, Z.1
Hinton, G.E.2
-
10
-
-
79551487646
-
Approximate riemannian conjugate gradient learning for fixed-form variational bayes
-
Nov
-
Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, and Juha Karhunen. Approximate riemannian conjugate gradient learning for fixed-form variational bayes. Journal of Machine Learning Research, 11(Nov):3235-3268, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3235-3268
-
-
Honkela, A.1
Raiko, T.2
Kuusela, M.3
Tornio, M.4
Karhunen, J.5
-
11
-
-
85012029160
-
-
arXiv preprint
-
Matthew J Johnson, David Duvenaud, Alexander B Wiltschko, Sandeep R Datta, and Ryan P Adams. Structured VAEs: Composing probabilistic graphical models and variational autoencoders. arXiv preprint arXiv:1603.06277, 2016.
-
(2016)
Structured VAEs: Composing Probabilistic Graphical Models and Variational Autoencoders
-
-
Johnson, M.J.1
Duvenaud, D.2
Wiltschko, A.B.3
Datta, S.R.4
Adams, R.P.5
-
12
-
-
0031347068
-
New extension of the kalman filter to nonlinear systems
-
International Society for Optics and Photonics
-
Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to nonlinear systems. In AeroSense'97, pp. 182-193. International Society for Optics and Photonics, 1997.
-
(1997)
AeroSense'97
, pp. 182-193
-
-
Julier, S.J.1
Uhlmann, J.K.2
-
13
-
-
85024423711
-
New results in linear filtering and prediction theory
-
Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction theory. Journal of basic engineering, 83(1):95-108, 1961.
-
(1961)
Journal of Basic Engineering
, vol.83
, Issue.1
, pp. 95-108
-
-
Kalman, R.E.1
Bucy, R.S.2
-
15
-
-
79951555580
-
Learning gp-bayesfilters via Gaussian process latent variable models
-
Jonathan Ko and Dieter Fox. Learning gp-bayesfilters via gaussian process latent variable models. Autonomous Robots, 30(1):3-23, 2011.
-
(2011)
Autonomous Robots
, vol.30
, Issue.1
, pp. 3-23
-
-
Ko, J.1
Fox, D.2
-
17
-
-
85010209459
-
Variational tempering
-
Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath, and David Blei. Variational tempering. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 704-712, 2016.
-
(2016)
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics
, pp. 704-712
-
-
Mandt, S.1
McInerney, J.2
Abrol, F.3
Ranganath, R.4
Blei, D.5
-
18
-
-
84947071478
-
Statistical inference for dynamical systems: A review
-
Kevin McGoff, Sayan Mukherjee, Natesh Pillai, et al. Statistical inference for dynamical systems: A review. Statistics Surveys, 9:209-252, 2015.
-
(2015)
Statistics Surveys
, vol.9
, pp. 209-252
-
-
McGoff, K.1
Mukherjee, S.2
Pillai, N.3
-
19
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Tony Jebara and Eric Xing eds, JMLR Workshop and Conference Proceedings
-
Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In Tony Jebara and Eric P. Xing (eds.), Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1278-1286. JMLR Workshop and Conference Proceedings, 2014. URL http://jmlr.org/proceedings/papers/v32/rezende14.pdf.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (ICML-14)
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
21
-
-
80052392279
-
Learning multilevel distributed representations for high-dimensional sequences
-
Marina Meila and Xiaotong Shen eds, Journal of Machine Learning Research Proceedings Track
-
Ilya Sutskever and Geoffrey E. Hinton. Learning multilevel distributed representations for high-dimensional sequences. In Marina Meila and Xiaotong Shen (eds.), Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07), volume 2, pp. 548-555. Journal of Machine Learning Research - Proceedings Track, 2007. URL http://jmlr.csail.mit.edu/proceedings/papers/v2/sutskever07a/sutskever07a.pdf.
-
(2007)
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07)
, vol.2
, pp. 548-555
-
-
Sutskever, I.1
Hinton, G.E.2
-
24
-
-
0038132747
-
An unsupervised ensemble learning method for nonlinear dynamic state-space models
-
Harri Valpola and Juha Karhunen. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural computation, 14(11):2647-2692, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2647-2692
-
-
Valpola, H.1
Karhunen, J.2
-
25
-
-
84965129327
-
Embed to control: A locally linear latent dynamics model for control from raw images
-
Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A locally linear latent dynamics model for control from raw images. In Advances in Neural Information Processing Systems, pp. 2728-2736, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2728-2736
-
-
Watter, M.1
Springenberg, J.2
Boedecker, J.3
Riedmiller, M.4
|