-
3
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
June
-
B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607–609, June 1996. ISSN 0028-0836.
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
4
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
L. Wiskott and T.J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural computation, 14(4):715–770, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.4
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.J.2
-
5
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML’09, pages 609–616, 2009. ISBN 978-1-60558-516-1.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ICML’09
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
6
-
-
85162460675
-
Learning convolutional feature hierarchies for visual recognition
-
K. Kavukcuoglu, P. Sermanet, Y.L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun. Learning convolutional feature hierarchies for visual recognition. Advances in Neural Information Processing Systems, pages 1090–1098, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 1090-1098
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.L.3
Gregor, K.4
Mathieu, M.5
LeCun, Y.6
-
7
-
-
77956001004
-
Deconvolutional networks
-
IEEE
-
M.D. Zeiler, D. Krishnan, G.W. Taylor, and R. Fergus. Deconvolutional networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2528–2535. IEEE, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
8
-
-
79551480483
-
Stacked denoising autoen-coders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Manzagol. Stacked denoising autoen-coders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11:3371–3408, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
9
-
-
0031570014
-
Dynamic model of visual recognition predicts neural response properties in the visual cortex
-
Rajesh P. N. Rao and Dana H. Ballard. Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation, 9:721–763, 1997.
-
(1997)
Neural Computation
, vol.9
, pp. 721-763
-
-
Rao, R.P.N.1
Ballard, D.H.2
-
10
-
-
57149113922
-
Hierarchical models in the brain
-
11
-
Karl Friston. Hierarchical models in the brain. PLoS Comput Biol, 4(11):e1000211, 11 2008.
-
(2008)
PLoS Comput Biol
, vol.4
, Issue.11
-
-
Friston, K.1
-
11
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
July
-
Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural Comp., (7):1527–1554, July .
-
Neural Comp
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
13
-
-
70049083257
-
Fast inference in sparse coding algorithms with applications to object recognition
-
Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. Fast inference in sparse coding algorithms with applications to object recognition. CoRR, abs/1010.3467, 2010.
-
(2010)
CoRR
-
-
Kavukcuoglu, K.1
Ranzato, M.2
LeCun, Y.3
-
14
-
-
13244255412
-
A hierarchical bayesian model for learning nonlinear statistical regularities in nonstationary natural signals
-
Yan Karklin and Michael S. Lewicki. A hierarchical bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Computation, 17:397–423, 2005.
-
(2005)
Neural Computation
, vol.17
, pp. 397-423
-
-
Karklin, Y.1
Lewicki, M.S.2
-
15
-
-
70449564983
-
Compressed sensing of time-varying signals
-
july
-
D. Angelosante, G.B. Giannakis, and E. Grossi. Compressed sensing of time-varying signals. In Digital Signal Processing, 2009 16th International Conference on, pages 1 –8, july 2009.
-
(2009)
Digital Signal Processing, 2009 16th International Conference on
, pp. 1-8
-
-
Angelosante, D.1
Giannakis, G.B.2
Grossi, E.3
-
16
-
-
79957798391
-
Sparsity penalties in dynamical system estimation
-
march
-
A. Charles, M.S. Asif, J. Romberg, and C. Rozell. Sparsity penalties in dynamical system estimation. In Information Sciences and Systems (CISS), 2011 45th Annual Conference on, pages 1 –6, march 2011.
-
(2011)
Information Sciences and Systems (CISS), 2011 45th Annual Conference on
, pp. 1-6
-
-
Charles, A.1
Asif, M.S.2
Romberg, J.3
Rozell, C.4
-
17
-
-
79952407275
-
Bayesian sequential compressed sensing in sparse dynamical systems
-
29 2010-oct. 1
-
D. Sejdinovic, C. Andrieu, and R. Piechocki. Bayesian sequential compressed sensing in sparse dynamical systems. In Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, pages 1730 –1736, 29 2010-oct. 1 2010. doi: 10.1109/ALLERTON. 2010.5707125.
-
(2010)
Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on
, pp. 1730-1736
-
-
Sejdinovic, D.1
Andrieu, C.2
Piechocki, R.3
-
18
-
-
84866248858
-
Smoothing proximal gradient method for general structured sparse regression
-
X. Chen, Q. Lin, S. Kim, J.G. Carbonell, and E.P. Xing. Smoothing proximal gradient method for general structured sparse regression. The Annals of Applied Statistics, 6(2):719–752, 2012.
-
(2012)
The Annals of Applied Statistics
, vol.6
, Issue.2
, pp. 719-752
-
-
Chen, X.1
Lin, Q.2
Kim, S.3
Carbonell, J.G.4
Xing, E.P.5
-
19
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
March
-
Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, (1):183–202, March . ISSN 19364954. doi: 10.1137/080716542.
-
SIAM Journal on Imaging Sciences
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
20
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103 (1):127–152, 2005.
-
(2005)
Mathematical Programming
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Y.1
-
21
-
-
85070902964
-
Efficient learning of sparse invariant representations
-
Karol Gregor and Yann LeCun. Efficient Learning of Sparse Invariant Representations. CoRR, abs/1105.5307, 2011.
-
(2011)
CoRR
-
-
Gregor, K.1
LeCun, Y.2
-
23
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
December
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1 (4):541–551, December 1989. ISSN 0899-7667. doi: 10.1162/neco.1989.1.4.541. URL http://dx.doi.org/10.1162/neco.1989.1.4.541.
-
(1989)
Neural Comput
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
|