메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Deep predictive coding networks

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; EXTRACTION; FEATURE EXTRACTION;

EID: 85083949938     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (55)

References (24)
  • 3
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • June
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607–609, June 1996. ISSN 0028-0836.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 4
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T.J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural computation, 14(4):715–770, 2002.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 8
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoen-coders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Manzagol. Stacked denoising autoen-coders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11:3371–3408, 2010.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 9
    • 0031570014 scopus 로고    scopus 로고
    • Dynamic model of visual recognition predicts neural response properties in the visual cortex
    • Rajesh P. N. Rao and Dana H. Ballard. Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation, 9:721–763, 1997.
    • (1997) Neural Computation , vol.9 , pp. 721-763
    • Rao, R.P.N.1    Ballard, D.H.2
  • 10
    • 57149113922 scopus 로고    scopus 로고
    • Hierarchical models in the brain
    • 11
    • Karl Friston. Hierarchical models in the brain. PLoS Comput Biol, 4(11):e1000211, 11 2008.
    • (2008) PLoS Comput Biol , vol.4 , Issue.11
    • Friston, K.1
  • 11
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • July
    • Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural Comp., (7):1527–1554, July .
    • Neural Comp , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 13
    • 70049083257 scopus 로고    scopus 로고
    • Fast inference in sparse coding algorithms with applications to object recognition
    • Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. Fast inference in sparse coding algorithms with applications to object recognition. CoRR, abs/1010.3467, 2010.
    • (2010) CoRR
    • Kavukcuoglu, K.1    Ranzato, M.2    LeCun, Y.3
  • 14
    • 13244255412 scopus 로고    scopus 로고
    • A hierarchical bayesian model for learning nonlinear statistical regularities in nonstationary natural signals
    • Yan Karklin and Michael S. Lewicki. A hierarchical bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Computation, 17:397–423, 2005.
    • (2005) Neural Computation , vol.17 , pp. 397-423
    • Karklin, Y.1    Lewicki, M.S.2
  • 18
    • 84866248858 scopus 로고    scopus 로고
    • Smoothing proximal gradient method for general structured sparse regression
    • X. Chen, Q. Lin, S. Kim, J.G. Carbonell, and E.P. Xing. Smoothing proximal gradient method for general structured sparse regression. The Annals of Applied Statistics, 6(2):719–752, 2012.
    • (2012) The Annals of Applied Statistics , vol.6 , Issue.2 , pp. 719-752
    • Chen, X.1    Lin, Q.2    Kim, S.3    Carbonell, J.G.4    Xing, E.P.5
  • 19
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • March
    • Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, (1):183–202, March . ISSN 19364954. doi: 10.1137/080716542.
    • SIAM Journal on Imaging Sciences , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 20
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103 (1):127–152, 2005.
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 21
    • 85070902964 scopus 로고    scopus 로고
    • Efficient learning of sparse invariant representations
    • Karol Gregor and Yann LeCun. Efficient Learning of Sparse Invariant Representations. CoRR, abs/1105.5307, 2011.
    • (2011) CoRR
    • Gregor, K.1    LeCun, Y.2
  • 23
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • December
    • Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1 (4):541–551, December 1989. ISSN 0899-7667. doi: 10.1162/neco.1989.1.4.541. URL http://dx.doi.org/10.1162/neco.1989.1.4.541.
    • (1989) Neural Comput , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1    Boser, B.2    Denker, J.S.3    Henderson, D.4    Howard, R.E.5    Hubbard, W.6    Jackel, L.D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.