메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Improving neural language models with a continuous cache

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ACTIVATION; COMPUTATIONAL LINGUISTICS;

EID: 85088228120     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (191)

References (50)
  • 2
    • 0020719320 scopus 로고
    • A maximum likelihood approach to continuous speech recognition
    • Lalit R Bahl, Frederick Jelinek, and Robert L Mercer. A maximum likelihood approach to continuous speech recognition. PAMI, 1983.
    • (1983) PAMI
    • Bahl, L.R.1    Jelinek, F.2    Mercer, R.L.3
  • 3
    • 0000274403 scopus 로고    scopus 로고
    • Exploiting latent semantic information in statistical language modeling
    • Jerome R Bellegarda. Exploiting latent semantic information in statistical language modeling. Proceedings of the IEEE, 2000.
    • (2000) Proceedings of the IEEE
    • Bellegarda, J.R.1
  • 8
    • 85128355013 scopus 로고    scopus 로고
    • Towards better integration of semantic predictors in statistical language modeling
    • Citeseer
    • Noah Coccaro and Daniel Jurafsky. Towards better integration of semantic predictors in statistical language modeling. In ICSLP. Citeseer, 1998.
    • (1998) ICSLP.
    • Coccaro, N.1    Jurafsky, D.2
  • 11
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 2011.
    • (2011) JMLR
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 16
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In ICASSP, 2013.
    • (2013) ICASSP
    • Graves, A.1    Mohamed, A.2    Hinton, G.3
  • 22
    • 0032785782 scopus 로고    scopus 로고
    • Modeling long distance dependence in language: Topic mixtures versus dynamic cache models
    • Rukmini M Iyer and Mari Ostendorf. Modeling long distance dependence in language: Topic mixtures versus dynamic cache models. IEEE Transactions on speech and audio processing, 1999.
    • (1999) IEEE Transactions on Speech and Audio Processing
    • Iyer, R.M.1    Ostendorf, M.2
  • 23
    • 0012357341 scopus 로고
    • A dynamic language model for speech recognition
    • Frederick Jelinek, Bernard Merialdo, Salim Roukos, and Martin Strauss. A dynamic language model for speech recognition. In HLT, 1991.
    • (1991) HLT
    • Jelinek, F.1    Merialdo, B.2    Roukos, S.3    Strauss, M.4
  • 27
    • 0023312404 scopus 로고
    • Estimation of probabilities from sparse data for the language model component of a speech recognizer
    • Slava M Katz. Estimation of probabilities from sparse data for the language model component of a speech recognizer. ICASSP, 1987.
    • (1987) ICASSP
    • Katz, S.M.1
  • 28
    • 0034297742 scopus 로고    scopus 로고
    • Maximum entropy techniques for exploiting syntactic, semantic and colloca-tional dependencies in language modeling
    • Sanjeev Khudanpur and Jun Wu. Maximum entropy techniques for exploiting syntactic, semantic and colloca-tional dependencies in language modeling. Computer Speech & Language, 2000.
    • (2000) Computer Speech & Language
    • Khudanpur, S.1    Wu, J.2
  • 29
    • 0028996876 scopus 로고
    • Improved backing-off for m-gram language modeling
    • Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language modeling. In ICASSP, 1995.
    • (1995) ICASSP
    • Kneser, R.1    Ney, H.2
  • 30
    • 0027192617 scopus 로고
    • On the dynamic adaptation of stochastic language models
    • Reinhard Kneser and Volker Steinbiss. On the dynamic adaptation of stochastic language models. In ICASSP, 1993.
    • (1993) ICASSP
    • Kneser, R.1    Steinbiss, V.2
  • 31
    • 0012259838 scopus 로고
    • Speech recognition and the frequency of recently used words: A modified markov model for natural language
    • Roland Kuhn. Speech recognition and the frequency of recently used words: A modified markov model for natural language. In Proceedings of the 12th conference on Computational linguistics-Volume 1, 1988.
    • (1988) Proceedings of the 12th Conference on Computational Linguistics- , vol.1
    • Kuhn, R.1
  • 32
    • 0025446887 scopus 로고
    • A cache-based natural language model for speech recognition
    • Roland Kuhn and Renato De Mori. A cache-based natural language model for speech recognition. PAMI, 1990.
    • (1990) PAMI
    • Kuhn, R.1    De Mori, R.2
  • 34
    • 0027252194 scopus 로고
    • Trigger-based language models: A maximum entropy approach
    • Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Trigger-based language models: A maximum entropy approach. In ICASSP, 1993.
    • (1993) ICASSP
    • Lau, R.1    Rosenfeld, R.2    Roukos, S.3
  • 37
    • 84874235486 scopus 로고    scopus 로고
    • Context dependent recurrent neural network language model
    • Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language model. In SLT, 2012.
    • (2012) SLT
    • Mikolov, T.1    Zweig, G.2
  • 39
    • 84865803833 scopus 로고    scopus 로고
    • Empirical evaluation and combination of advanced language modeling techniques
    • Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukas Burget, and Jan Cernocky. ` Empirical evaluation and combination of advanced language modeling techniques. In INTERSPEECH, 2011.
    • (2011) INTERSPEECH
    • Mikolov, T.1    Deoras, A.2    Kombrink, S.3    Burget, L.4    Cernocky, J.5
  • 42
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modeling
    • Ronald Rosenfeld. A maximum entropy approach to adaptive statistical language modeling. Computer, Speech and Language, 1996.
    • (1996) Computer, Speech and Language
    • Rosenfeld, R.1
  • 48
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural computation, 1990.
    • (1990) Neural Computation
    • Williams, R.J.1    Peng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.