-
1
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Curran Associates, Inc.
-
Ilya Sutskever, Oriol Vinyals, and Quoc V. V. Le. Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3104-3112. Curran Associates, Inc., 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.V.3
-
2
-
-
84919728106
-
-
arXiv preprint arXiv:1406.1078
-
Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
-
(2014)
Learning Phrase Representations Using Rnn Encoder-decoder for Statistical Machine Translation
-
-
Cho, K.1
Van Merrienboer, B.2
Gulcehre, C.3
Bougares, F.4
Schwenk, H.5
Bengio, Y.6
-
5
-
-
84892708224
-
Supervised sequence labelling with recurrent neural networks
-
Springer
-
Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume 385 of Studies in Computational Intelligence. Springer, 2012.
-
(2012)
Studies in Computational Intelligence
, vol.385
-
-
Graves, A.1
-
6
-
-
70450158501
-
Latent-variable modeling of string transductions with finite-state methods
-
Stroudsburg, PA, USA, Association for Computational Linguistics
-
Markus Dreyer, Jason R. Smith, and Jason Eisner. Latent-variable modeling of string transductions with finite-state methods. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP'08, pages 1080-1089, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.
-
(2008)
Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP'08
, pp. 1080-1089
-
-
Dreyer, M.1
Smith, J.R.2
Eisner, J.3
-
7
-
-
38149133882
-
Open-FST: A general and efficient weighted finite-state transducer library
-
Springer Berlin Heidelberg
-
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. Open-FST: A general and efficient weighted finite-state transducer library. In Implementation and Application of Automata, volume 4783 of Lecture Notes in Computer Science, pages 11-23. Springer Berlin Heidelberg, 2007.
-
(2007)
Implementation and Application of Automata, Volume 4783 of Lecture Notes in Computer Science
, pp. 11-23
-
-
Allauzen, C.1
Riley, M.2
Schalkwyk, J.3
Skut, W.4
Mohri, M.5
-
8
-
-
0000319590
-
Stochastic inversion transduction grammars and bilingual parsing of parallel corpora
-
Dekai Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational linguistics, 23(3):377-403, 1997.
-
(1997)
Computational Linguistics
, vol.23
, Issue.3
, pp. 377-403
-
-
Wu, D.1
-
10
-
-
0009401446
-
Learning context-free grammars: Capabilities and limitations of a recurrent neural network with an external stack memory
-
Indiana University
-
Sreerupa Das, C Lee Giles, and Guo-Zheng Sun. Learning context-free grammars: Capabilities and limitations of a recurrent neural network with an external stack memory. In Proceedings of The Fourteenth Annual Conference of Cognitive Science Society. Indiana University, 1992.
-
(1992)
Proceedings of the Fourteenth Annual Conference of Cognitive Science Society
-
-
Das, S.1
Lee Giles, C.2
Sun, G.-Z.3
-
17
-
-
85149132201
-
Machine translation with a stochastic grammatical channel
-
Association for Computational Linguistics
-
Dekai Wu and Hongsing Wong. Machine translation with a stochastic grammatical channel. In Proceedings of the 17th international conference on Computational linguistics-Volume 2, pages 1408-1415. Association for Computational Linguistics, 1998.
-
(1998)
Proceedings of the 17th International Conference on Computational linguistics
, vol.2
, pp. 1408-1415
-
-
Wu, D.1
Wong, H.2
-
18
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.4
-
-
Tieleman, T.1
Hinton, G.2
-
20
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be better than all. Artificial intelligence, 137(1):239-263, 2002.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|