메뉴 건너뛰기




Volumn 3, Issue 4, 2017, Pages 1675-1689

Drought forecasting using data-driven methods and an evolutionary algorithm

Author keywords

Drought forecasting; Evolutionary algorithm; Multi layer perceptron; Standard precipitation index; Support vector regression

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; DROUGHT; PRECIPITATION ASSESSMENT; QUANTITATIVE ANALYSIS; SUPPORT VECTOR MACHINE; WEATHER FORECASTING;

EID: 85084650379     PISSN: 23636203     EISSN: 23636211     Source Type: Journal    
DOI: 10.1007/s40808-017-0385-x     Document Type: Article
Times cited : (36)

References (51)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723 DOI: 10.1109/TAC.1974.1100705
    • (1974) IEEE Trans Autom Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 84959201092 scopus 로고    scopus 로고
    • Long-term periodic drought modeling
    • Almedeij J (2016) Long-term periodic drought modeling. Stochastic Environ Res Risk Assess 30(3):901–910 DOI: 10.1007/s00477-015-1065-x
    • (2016) Stochastic Environ Res Risk Assess , vol.30 , Issue.3 , pp. 901-910
    • Almedeij, J.1
  • 4
    • 78149290542 scopus 로고    scopus 로고
    • Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
    • Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation, 4661–4667
    • (2007) In 2007 IEEE Congress on Evolutionary Computation , pp. 4661-4667
    • Atashpaz-Gargari, E.1    Lucas, C.2
  • 5
    • 84970022021 scopus 로고    scopus 로고
    • A multi-level strategic group decision making for understanding and analysis of sustainable watershed planning in response to environmental perplexities
    • Azarnivand A, Banihabib ME (2016) A multi-level strategic group decision making for understanding and analysis of sustainable watershed planning in response to environmental perplexities. Group Decis Negot. doi:10.1007/s10726-016-9484-8
    • (2016) Group Decis Negot
    • Azarnivand, A.1    Banihabib, M.E.2
  • 6
    • 71149094442 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for drought forecasting
    • Bacanli UG, Firat M, Dikbas F (2009) Adaptive neuro-fuzzy inference system for drought forecasting. Stoch Environ Res Risk Assess 23(8):1143–1154 DOI: 10.1007/s00477-008-0288-5
    • (2009) Stoch Environ Res Risk Assess , vol.23 , Issue.8 , pp. 1143-1154
    • Bacanli, U.G.1    Firat, M.2    Dikbas, F.3
  • 7
    • 84876820915 scopus 로고    scopus 로고
    • Artificial neural network–based drought forecasting using a nonlinear aggregated drought index
    • Barua S, Ng AWM, Perera BJC (2012) Artificial neural network–based drought forecasting using a nonlinear aggregated drought index. J Hydrol Eng 17(12):1408–1413 DOI: 10.1061/(ASCE)HE.1943-5584.0000574
    • (2012) J Hydrol Eng , vol.17 , Issue.12 , pp. 1408-1413
    • Barua, S.1    Ng, A.W.M.2    Perera, B.J.C.3
  • 8
    • 84889675754 scopus 로고    scopus 로고
    • Drought forecasting using new machine learning methods/Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod
    • Belayneh A, Adamowski J (2013) Drought forecasting using new machine learning methods/Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod. J Water Land Dev 18(9):3–12 DOI: 10.2478/jwld-2013-0001
    • (2013) J Water Land Dev , vol.18 , Issue.9 , pp. 3-12
    • Belayneh, A.1    Adamowski, J.2
  • 10
    • 84974777493 scopus 로고    scopus 로고
    • Development of a comparative multiple criteria framework for ranking Pareto optimal solutions of a multiobjective reservoir operation problem
    • Bozorg-Haddad O, Azarnivand A, Hosseini-Moghari SM, Loáiciga HA (2016a) Development of a comparative multiple criteria framework for ranking Pareto optimal solutions of a multiobjective reservoir operation problem. J Irrig Drain Eng 142(7):04016019 DOI: 10.1061/(ASCE)IR.1943-4774.0001028
    • (2016) J Irrig Drain Eng , vol.142 , Issue.7 , pp. 04016019
    • Bozorg-Haddad, O.1    Azarnivand, A.2    Hosseini-Moghari, S.M.3    Loáiciga, H.A.4
  • 11
    • 85009424614 scopus 로고    scopus 로고
    • WASPAS application and evolutionary algorithm benchmarking in optimal reservoir optimization problems
    • Bozorg-Haddad O, Azarnivand A, Hosseini-Moghari SM, Loáiciga HA (2016b) WASPAS application and evolutionary algorithm benchmarking in optimal reservoir optimization problems. J Water Resour Plann Manage 143(1):04016070 DOI: 10.1061/(ASCE)WR.1943-5452.0000716
    • (2016) J Water Resour Plann Manage , vol.143 , Issue.1 , pp. 04016070
    • Bozorg-Haddad, O.1    Azarnivand, A.2    Hosseini-Moghari, S.M.3    Loáiciga, H.A.4
  • 12
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126 DOI: 10.1016/S0893-6080(03)00169-2
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 13
    • 84905973032 scopus 로고    scopus 로고
    • Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index SPI
    • Cheval S, Busuioc A, Dumitrescu A, Birsan MV (2014) Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index SPI. Clim Res 60(3):235–248 DOI: 10.3354/cr01245
    • (2014) Clim Res , vol.60 , Issue.3 , pp. 235-248
    • Cheval, S.1    Busuioc, A.2    Dumitrescu, A.3    Birsan, M.V.4
  • 14
    • 84939985384 scopus 로고    scopus 로고
    • Linkages between local knowledge drought forecasting indicators and scientific drought forecasting parameters in the Limpopo River Basin in Southern Africa
    • Chisadza B, Tumbare MJ, Nyabeze WR, Nhapi I (2015) Linkages between local knowledge drought forecasting indicators and scientific drought forecasting parameters in the Limpopo River Basin in Southern Africa. Int J Disaster Risk Reduct 12:226–233 DOI: 10.1016/j.ijdrr.2015.01.007
    • (2015) Int J Disaster Risk Reduct , vol.12 , pp. 226-233
    • Chisadza, B.1    Tumbare, M.J.2    Nyabeze, W.R.3    Nhapi, I.4
  • 15
    • 85042079046 scopus 로고    scopus 로고
    • Introduction of new datasets of drought indices based on multivariate methods in semi-arid regions
    • Chitsaz N, Hosseini-Moghari SM (2017) Introduction of new datasets of drought indices based on multivariate methods in semi-arid regions. Hydrol Res. doi:10.2166/nh.2017.254
    • (2017) Hydrol Res
    • Chitsaz, N.1    Hosseini-Moghari, S.M.2
  • 16
    • 84976417264 scopus 로고    scopus 로고
    • Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique
    • Chitsaz N, Azarnivand A, Araghinejad S (2016) Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique. Hydrol Sci J 61(12):2164–2178 DOI: 10.1080/02626667.2015.1085991
    • (2016) Hydrol Sci J , vol.61 , Issue.12 , pp. 2164-2178
    • Chitsaz, N.1    Azarnivand, A.2    Araghinejad, S.3
  • 17
    • 84877028763 scopus 로고    scopus 로고
    • Application of artificial neural networks on drought prediction in Yazd (Central Iran)
    • Dastorani MT, Afkhami H (2011) Application of artificial neural networks on drought prediction in Yazd (Central Iran). Desert 16(1):39–48
    • (2011) Desert , vol.16 , Issue.1 , pp. 39-48
    • Dastorani, M.T.1    Afkhami, H.2
  • 18
    • 78650075506 scopus 로고    scopus 로고
    • Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey
    • Durdu ÖF (2010) Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey. Stoch Environ Res Risk Assess 24(8):1145–1162 DOI: 10.1007/s00477-010-0366-3
    • (2010) Stoch Environ Res Risk Assess , vol.24 , Issue.8 , pp. 1145-1162
    • Durdu, Ö.F.1
  • 21
    • 85016634184 scopus 로고    scopus 로고
    • Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr Plain, East Azerbaijan, Iran
    • Gorgij AD, Kisi O, Moghaddam AA (2016) Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr Plain, East Azerbaijan, Iran. Hydrol Res. doi:10.2166/nh.2016.202
    • (2016) Hydrol Res
    • Gorgij, A.D.1    Kisi, O.2    Moghaddam, A.A.3
  • 22
    • 0032910542 scopus 로고    scopus 로고
    • Accepting the Standardized Precipitation Index: a calculation algorithm
    • Guttman NB (1999) Accepting the Standardized Precipitation Index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322 DOI: 10.1111/j.1752-1688.1999.tb03592.x
    • (1999) J Am Water Resour Assoc , vol.35 , Issue.2 , pp. 311-322
    • Guttman, N.B.1
  • 23
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366 DOI: 10.1016/0893-6080(89)90020-8
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 24
    • 85028456825 scopus 로고    scopus 로고
    • A comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershed, Iran
    • Javan K, Lialestani MRFH, Nejadhossein M (2015) A comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershed, Iran. Model Earth Syst Environ 1(4):41 DOI: 10.1007/s40808-015-0042-1
    • (2015) Model Earth Syst Environ , vol.1 , Issue.4 , pp. 41
    • Javan, K.1    Lialestani, M.R.F.H.2    Nejadhossein, M.3
  • 25
    • 84918565931 scopus 로고    scopus 로고
    • A probabilistic approach to assess agricultural drought risk to maize in Southern Africa and millet in Western Sahel using satellite estimated rainfall
    • Jayanthi H, Husak GJ, Funk C, Magadzire T, Adoum A, Verdin JP (2014) A probabilistic approach to assess agricultural drought risk to maize in Southern Africa and millet in Western Sahel using satellite estimated rainfall. Int J Disaster Risk Reduct 10:490–502 DOI: 10.1016/j.ijdrr.2014.04.002
    • (2014) Int J Disaster Risk Reduct , vol.10 , pp. 490-502
    • Jayanthi, H.1    Husak, G.J.2    Funk, C.3    Magadzire, T.4    Adoum, A.5    Verdin, J.P.6
  • 26
    • 84930543195 scopus 로고    scopus 로고
    • Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model
    • Kan G, Yao C, Li Q, Li Z, Yu Z, Liu Z, Liang K (2015) Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model. Stoch Environ Res Risk Assess 29(5):1345–1370 DOI: 10.1007/s00477-015-1040-6
    • (2015) Stoch Environ Res Risk Assess , vol.29 , Issue.5 , pp. 1345-1370
    • Kan, G.1    Yao, C.2    Li, Q.3    Li, Z.4    Yu, Z.5    Liu, Z.6    Liang, K.7
  • 27
    • 84862679428 scopus 로고    scopus 로고
    • Suspended sediment modeling using genetic programming and soft computing techniques
    • Kisi O, Dailr AH, Cimen M, Shiri J (2012) Suspended sediment modeling using genetic programming and soft computing techniques. J Hydrol 450:48–58 DOI: 10.1016/j.jhydrol.2012.05.031
    • (2012) J Hydrol , vol.450 , pp. 48-58
    • Kisi, O.1    Dailr, A.H.2    Cimen, M.3    Shiri, J.4
  • 29
    • 29144477214 scopus 로고    scopus 로고
    • Drought forecasting using stochastic models. Stochastic
    • Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stochastic. Environ Res Risk Assess 19(5):326–339 DOI: 10.1007/s00477-005-0238-4
    • (2005) Environ Res Risk Assess , vol.19 , Issue.5 , pp. 326-339
    • Mishra, A.K.1    Desai, V.R.2
  • 30
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feed-forward recursive neural network
    • Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198(1):127–138 DOI: 10.1016/j.ecolmodel.2006.04.017
    • (2006) Ecol Model , vol.198 , Issue.1 , pp. 127-138
    • Mishra, A.K.1    Desai, V.R.2
  • 31
    • 77956191461 scopus 로고    scopus 로고
    • A review of drought concepts
    • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1):202–216 DOI: 10.1016/j.jhydrol.2010.07.012
    • (2010) J Hydrol , vol.391 , Issue.1 , pp. 202-216
    • Mishra, A.K.1    Singh, V.P.2
  • 32
    • 79955881885 scopus 로고    scopus 로고
    • Drought modeling—A review
    • Mishra AK, Singh VP (2011) Drought modeling—A review. J Hydrol 403(1):157–175 DOI: 10.1016/j.jhydrol.2011.03.049
    • (2011) J Hydrol , vol.403 , Issue.1 , pp. 157-175
    • Mishra, A.K.1    Singh, V.P.2
  • 33
    • 36348930024 scopus 로고    scopus 로고
    • Drought forecasting using a hybrid stochastic and neural network model
    • Mishra AK, Desai VR, Singh VP (2007) Drought forecasting using a hybrid stochastic and neural network model. J Hydrol Eng 12(6):626–638 DOI: 10.1061/(ASCE)1084-0699(2007)12:6(626)
    • (2007) J Hydrol Eng , vol.12 , Issue.6 , pp. 626-638
    • Mishra, A.K.1    Desai, V.R.2    Singh, V.P.3
  • 34
    • 33846093833 scopus 로고    scopus 로고
    • Streamflow drought time series forecasting
    • Modarres R (2007) Streamflow drought time series forecasting. Stoch Environ Res Risk Assess 21(3):223–233 DOI: 10.1007/s00477-006-0058-1
    • (2007) Stoch Environ Res Risk Assess , vol.21 , Issue.3 , pp. 223-233
    • Modarres, R.1
  • 35
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27(15):2103–2111 DOI: 10.1002/joc.1498
    • (2007) Int J Climatol , vol.27 , Issue.15 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 36
    • 85077927202 scopus 로고    scopus 로고
    • Estimation of reference evapotranspiration using data driven techniques under limited data conditions
    • Pandey PK, Nyori T, Pandey V (2017) Estimation of reference evapotranspiration using data driven techniques under limited data conditions. Model Earth Syst Environ 1–13
    • (2017) Model Earth Syst Environ , pp. 1-13
    • Pandey, P.K.1    Nyori, T.2    Pandey, V.3
  • 37
    • 84878423026 scopus 로고    scopus 로고
    • Unravelling strategic choices towards droughts and floods’ adaptation in Southern Malawi
    • Pangapanga PI, Jumbe CB, Kanyanda S, Thangalimodzi L (2012) Unravelling strategic choices towards droughts and floods’ adaptation in Southern Malawi. Int J Disaster Risk Reduct 2:57–66 DOI: 10.1016/j.ijdrr.2012.08.002
    • (2012) Int J Disaster Risk Reduct , vol.2 , pp. 57-66
    • Pangapanga, P.I.1    Jumbe, C.B.2    Kanyanda, S.3    Thangalimodzi, L.4
  • 38
    • 84930543077 scopus 로고    scopus 로고
    • Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data
    • Partal T, Cigizoglu HK, Kahya E (2015) Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data. Stoch Environ Res Risk Assess 29(5):1317–1329 DOI: 10.1007/s00477-015-1061-1
    • (2015) Stoch Environ Res Risk Assess , vol.29 , Issue.5 , pp. 1317-1329
    • Partal, T.1    Cigizoglu, H.K.2    Kahya, E.3
  • 39
    • 84872848015 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization in water resources: the past, present, and future
    • Reed PM, Hadka D, Herman JD, Kasprzyk JR, Kollat JB (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv Water Resour 51(1):438–456 DOI: 10.1016/j.advwatres.2012.01.005
    • (2013) Adv Water Resour , vol.51 , Issue.1 , pp. 438-456
    • Reed, P.M.1    Hadka, D.2    Herman, J.D.3    Kasprzyk, J.R.4    Kollat, J.B.5
  • 40
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Annal Stat 6(2):461–464 DOI: 10.1214/aos/1176344136
    • (1978) Annal Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 41
    • 84978517055 scopus 로고    scopus 로고
    • Estimation of reference evapotranspiration using neural networks and cuckoo search algorithm
    • Shamshirband S, Amirmojahedi M, Gocić M, Akib S, Petković D, Piri J, Trajkovic S (2015) Estimation of reference evapotranspiration using neural networks and cuckoo search algorithm. J Irrig Drain Eng 142(2):04015044 DOI: 10.1061/(ASCE)IR.1943-4774.0000949
    • (2015) J Irrig Drain Eng , vol.142 , Issue.2 , pp. 04015044
    • Shamshirband, S.1    Amirmojahedi, M.2    Gocić, M.3    Akib, S.4    Petković, D.5    Piri, J.6    Trajkovic, S.7
  • 42
    • 85015820252 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using ANN and support vector machines: a case study from Nepal watershed
    • Sharma N, Zakaullah M, Tiwari H, Kumar D (2015) Runoff and sediment yield modeling using ANN and support vector machines: a case study from Nepal watershed. Model Earth Syst Environ 1(3):23 DOI: 10.1007/s40808-015-0027-0
    • (2015) Model Earth Syst Environ , vol.1 , Issue.3 , pp. 23
    • Sharma, N.1    Zakaullah, M.2    Tiwari, H.3    Kumar, D.4
  • 43
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218 DOI: 10.1061/(ASCE)0733-9437(2003)129:3(214)
    • (2003) J Irrig Drain Eng , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 44
    • 84924153739 scopus 로고    scopus 로고
    • Neural network river forecasting with multi-objective fully informed particle swarm optimization
    • Taormina R, Chau KW (2015) Neural network river forecasting with multi-objective fully informed particle swarm optimization. J Hydroinformatics 17(1):99–113 DOI: 10.2166/hydro.2014.116
    • (2015) J Hydroinformatics , vol.17 , Issue.1 , pp. 99-113
    • Taormina, R.1    Chau, K.W.2
  • 45
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay FE, Cao L 2001 Application of support vector machines in financial time series forecasting. Omega 29(4):309–317 DOI: 10.1016/S0305-0483(01)00026-3
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.1    Cao, L.2
  • 48
    • 85036604842 scopus 로고    scopus 로고
    • Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra, India
    • Wagh VM, Panaskar DB, Muley AA, Mukate SV, Lolage YP, Aamalawar ML (2016) Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra, India. Model Earth Syst Environ 2(4):196 DOI: 10.1007/s40808-016-0250-3
    • (2016) Model Earth Syst Environ , vol.2 , Issue.4 , pp. 196
    • Wagh, V.M.1    Panaskar, D.B.2    Muley, A.A.3    Mukate, S.V.4    Lolage, Y.P.5    Aamalawar, M.L.6
  • 49
    • 0022195325 scopus 로고
    • Understanding: the drought phenomenon: the role of definitions
    • Wilhite DA, Glantz MH (1985) Understanding: the drought phenomenon: the role of definitions. Water Int 10(3):111–120 DOI: 10.1080/02508068508686328
    • (1985) Water Int , vol.10 , Issue.3 , pp. 111-120
    • Wilhite, D.A.1    Glantz, M.H.2
  • 50
    • 0022841255 scopus 로고
    • Improving federal response to drought
    • Wilhite DA, Rosenberg NJ, Glantz MH (1986) Improving federal response to drought. J Climate Appl Meteorol 25(3):332–342 DOI: 10.1175/1520-0450(1986)025<0332:IFRTD>2.0.CO;2
    • (1986) J Climate Appl Meteorol , vol.25 , Issue.3 , pp. 332-342
    • Wilhite, D.A.1    Rosenberg, N.J.2    Glantz, M.H.3
  • 51
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu CL, Chau KW, Li YS (2008) River stage prediction based on a distributed support vector regression. J Hydrol 358(1):96–111 DOI: 10.1016/j.jhydrol.2008.05.028
    • (2008) J Hydrol , vol.358 , Issue.1 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.