메뉴 건너뛰기




Volumn 3, Issue 4, 2017, Pages 1449-1461

Estimation of reference evapotranspiration using data driven techniques under limited data conditions

Author keywords

ANNs; Data driven techniques; ER; Gamma test technique; MLNR; Reference evapotranspiration; SVMs

Indexed keywords

ACCURACY ASSESSMENT; ARTIFICIAL NEURAL NETWORK; ESTIMATION METHOD; EVAPOTRANSPIRATION; PENMAN-MONTEITH EQUATION; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINE;

EID: 85077927202     PISSN: 23636203     EISSN: 23636211     Source Type: Journal    
DOI: 10.1007/s40808-017-0367-z     Document Type: Article
Times cited : (30)

References (39)
  • 3
    • 60949107676 scopus 로고    scopus 로고
    • Co-active neurofuzzy inference system for evapotranspiration modeling
    • Aytek A (2008) Co-active neurofuzzy inference system for evapotranspiration modeling. Soft Comput 13(7):691–700 DOI: 10.1007/s00500-008-0342-8
    • (2008) Soft Comput , vol.13 , Issue.7 , pp. 691-700
    • Aytek, A.1
  • 4
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23(5):825–837 DOI: 10.1007/s11269-008-9301-5
    • (2009) Water Resour Manag , vol.23 , Issue.5 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Kluwer Academic Publishers, Boston
    • Cortex C, Vapnik V (1995) Support vector networks. Kluwer Academic Publishers, Boston. Mach Learn 20:273–297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortex, C.1    Vapnik, V.2
  • 6
    • 38849209134 scopus 로고    scopus 로고
    • An evolutionary approach to stream temperature analysis
    • Doglioni A, Giustolisi O, Savic DA, Webb BW (2007) An evolutionary approach to stream temperature analysis. Hydrol Process 22(3):315–326 DOI: 10.1002/hyp.6607
    • (2007) Hydrol Process , vol.22 , Issue.3 , pp. 315-326
    • Doglioni, A.1    Giustolisi, O.2    Savic, D.A.3    Webb, B.W.4
  • 7
    • 78049362919 scopus 로고    scopus 로고
    • Comparison of three data-driven techniques in modelling the evapotranspiration process
    • El-Baroudy I, Elshorbagy A, Carey SK, Giustolisi O, Savic DA (2010) Comparison of three data-driven techniques in modelling the evapotranspiration process. J Hydroinform 12(4):365. 10.2166/hydro.2010.029 DOI: 10.2166/hydro.2010.029
    • (2010) J Hydroinform , vol.12 , Issue.4 , pp. 365
    • El-Baroudy, I.1    Elshorbagy, A.2    Carey, S.K.3    Giustolisi, O.4    Savic, D.A.5
  • 8
    • 84861487810 scopus 로고    scopus 로고
    • Estimating Penman Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: a case study
    • Eslamian SS, Gohari SA, Zareian MJ, Firoozfar A (2012) Estimating Penman Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: a case study. Arabian J Sci Eng 37(4):935–994 DOI: 10.1007/s13369-012-0214-5
    • (2012) Arabian J Sci Eng , vol.37 , Issue.4 , pp. 935-994
    • Eslamian, S.S.1    Gohari, S.A.2    Zareian, M.J.3    Firoozfar, A.4
  • 11
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modeling
    • Giustolisi O, Laucelli D (2005) Improving generalization of artificial neural networks in rainfall-runoff modeling. Hydrol Sci J 50(3):439–457 DOI: 10.1623/hysj.50.3.439.65025
    • (2005) Hydrol Sci J , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 12
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • Giustolisi O, Savic DA (2006) A symbolic data-driven technique based on evolutionary polynomial regression. J Hydroinformatics 8(3):207–222. 10.2166/hydro.2006.020
    • (2006) J Hydroinform , vol.8 , Issue.3 , pp. 207-222
    • Giustolisi, O.1    Savic, D.A.2
  • 13
    • 33745024580 scopus 로고    scopus 로고
    • Optimal design of artificial neural networks by multi-objective strategy: groundwater level predictions
    • Giustolisi O, Simeone V (2006) Optimal design of artificial neural networks by multi-objective strategy: groundwater level predictions. Hydrol Sci J 51(3):502–523 DOI: 10.1623/hysj.51.3.502
    • (2006) Hydrol Sci J , vol.51 , Issue.3 , pp. 502-523
    • Giustolisi, O.1    Simeone, V.2
  • 14
    • 33845689247 scopus 로고    scopus 로고
    • A multi-model approach to analysis of environmental phenomena
    • Giustolisi O, Doglioni A, Savic DA, Webb BW (2007) A multi-model approach to analysis of environmental phenomena. Environ Model Softw 22(5):674–682 DOI: 10.1016/j.envsoft.2005.12.026
    • (2007) Environ Model Softw , vol.22 , Issue.5 , pp. 674-682
    • Giustolisi, O.1    Doglioni, A.2    Savic, D.A.3    Webb, B.W.4
  • 15
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2(5):359–366 DOI: 10.1016/0893-6080(89)90020-8
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 84858714150 scopus 로고    scopus 로고
    • Artificial neural network models for reference evapotranspiration in an arid area of northwest China
    • Huo Z, Feng S, Kang S, Dai X (2012) Artificial neural network models for reference evapotranspiration in an arid area of northwest China. J Arid Environ 82:81–90 DOI: 10.1016/j.jaridenv.2012.01.016
    • (2012) J Arid Environ , vol.82 , pp. 81-90
    • Huo, Z.1    Feng, S.2    Kang, S.3    Dai, X.4
  • 18
    • 84857220245 scopus 로고    scopus 로고
    • Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique
    • Karimaldini F, Shui L (2012) Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique. J Irrig Drain Eng 138:21–34. 10.1061/(ASCE)IR.1943-4774.0000343 DOI: 10.1061/(ASCE)IR.1943-4774.0000343
    • (2012) J Irrig Drain Eng , vol.138 , pp. 21-34
    • Karimaldini, F.1    Shui, L.2
  • 19
    • 78650769552 scopus 로고    scopus 로고
    • Deciding the embedding nonlinear model dimensions and data size prior to daily reference evapotranspiration modeling
    • Karimaldini F, Shui LT, Abdollahi M, Khalili N (2010) Deciding the embedding nonlinear model dimensions and data size prior to daily reference evapotranspiration modeling. Aust J Basic Appl Sci 4(11):5668–5674
    • (2010) Aust J Basic Appl Sci , vol.4 , Issue.11 , pp. 5668-5674
    • Karimaldini, F.1    Shui, L.T.2    Abdollahi, M.3    Khalili, N.4
  • 20
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modeling from climatic data using a neural computing technique
    • Kisi O (2007) Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol Process 21(6):1925–1934 DOI: 10.1002/hyp.6403
    • (2007) Hydrol Process , vol.21 , Issue.6 , pp. 1925-1934
    • Kisi, O.1
  • 21
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modeling using support vector machines
    • Kisi O, Cimen M (2009) Evapotranspiration modeling using support vector machines. Hydrol Sci J 54(5):918–928 DOI: 10.1623/hysj.54.5.918
    • (2009) Hydrol Sci J , vol.54 , Issue.5 , pp. 918-928
    • Kisi, O.1    Cimen, M.2
  • 22
    • 84953791253 scopus 로고    scopus 로고
    • Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution
    • Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol 534:104–112 DOI: 10.1016/j.jhydrol.2015.12.014
    • (2016) J Hydrol , vol.534 , pp. 104-112
    • Kisi, O.1    Parmar, K.S.2
  • 23
    • 85017432781 scopus 로고    scopus 로고
    • Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline and m5 model tree models
    • Kisi O, Parmar KS, Soni K, Demir V (2017) Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline and m5 model tree models. Air Qual Atmos Health. 10.1007/s11869-017-0477-9
    • (2016) Air Qual Atmos Health
    • Kisi, O.1    Parmar, K.S.2    Demir, V.3
  • 24
    • 34547756974 scopus 로고    scopus 로고
    • Discussion of generalized regression neural networks for evapotranspiration modeling
    • Koutsoyiannis D (2007) Discussion of generalized regression neural networks for evapotranspir- ration modeling. J Hydrol Sci 52(4):832–835 DOI: 10.1623/hysj.52.4.832
    • (2007) J Hydrol Sci , vol.52 , Issue.4 , pp. 832-835
    • Koutsoyiannis, D.1
  • 25
    • 84865618995 scopus 로고    scopus 로고
    • Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions
    • Laaboudi A, Mouhouche B, Draoui B (2012) Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions. IntJ Biometeorol 56:831–841 (831–841) DOI: 10.1007/s00484-011-0485-7
    • (2012) IntJ Biometeorol , vol.56 , pp. 831-841
    • Laaboudi, A.1    Mouhouche, B.2    Draoui, B.3
  • 27
    • 27744435513 scopus 로고    scopus 로고
    • A new approach for the prediction of ash fusion temperatures: a case study using Turkishlignites
    • Ozbayoglu G, Ozbayoglu ME (2006) A new approach for the prediction of ash fusion temperatures: a case study using Turkishlignites. Fuel 85:545–552 DOI: 10.1016/j.fuel.2004.12.020
    • (2006) Fuel , vol.85 , pp. 545-552
    • Ozbayoglu, G.1    Ozbayoglu, M.E.2
  • 28
    • 85057460110 scopus 로고    scopus 로고
    • Evaluation of temperature-based Penman–Monteith (TPM) model under the humid environment
    • Pandey PK, Pandey V (2016) Evaluation of temperature-based Penman–Monteith (TPM) model under the humid environment. Model Earth Syst Environ 2:152. 10.1007/s40808-016-0204-9 DOI: 10.1007/s40808-016-0204-9
    • (2016) Model Earth Syst Environ , vol.2 , pp. 152
    • Pandey, P.K.1    Pandey, V.2
  • 29
    • 84913612852 scopus 로고    scopus 로고
    • Calibration and performance verification of Hargreaves–Samani equation in a humid region
    • Pandey V, Pandey PK, Mahanta AP (2014) Calibration and performance verification of Hargreaves–Samani equation in a humid region. Irrig Drain 63:659–667 DOI: 10.1002/ird.1874
    • (2014) Irrig Drain , vol.63 , pp. 659-667
    • Pandey, V.1    Pandey, P.K.2    Mahanta, A.P.3
  • 30
    • 85020298889 scopus 로고    scopus 로고
    • Evaluation of reference evapotranspiration methods for the northeastern region of India
    • Pandey PK, Dabral PP, Pandey V (2016) Evaluation of reference evapotranspiration methods for the northeastern region of India. Int Soil Water Conserv Res. 10.1016/j.iswcr.2016.02.003
    • (2016) Int Soil Water Conserv Res
    • Pandey, P.K.1    Dabral, P.P.2    Pandey, V.3
  • 31
    • 33845600932 scopus 로고    scopus 로고
    • Modeling the dynamics of the evapotranspiration process using genetic programming
    • Parasuraman K, Elshorbagy A, Carey SK (2007) Modeling the dynamics of the evapotranspiration process using genetic programming. J Hydrol Eng (ASCE) 12(1):52–62 DOI: 10.1061/(ASCE)1084-0699(2007)12:1(52)
    • (2007) J Hydrol Eng (ASCE) , vol.12 , Issue.1 , pp. 52-62
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 32
    • 84918593436 scopus 로고    scopus 로고
    • River water prediction modeling using neural networks, fuzzy and wavelet coupled model
    • Parmar KS, Bhardwaj R (2015) River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resour Manag 29(1):17–33 DOI: 10.1007/s11269-014-0824-7
    • (2015) Water Resour Manag , vol.29 , Issue.1 , pp. 17-33
    • Parmar, K.S.1    Bhardwaj, R.2
  • 33
    • 84855193767 scopus 로고    scopus 로고
    • Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
    • Shiri J, Kisi Ö., Landeras G, López JJ, Nazemi AH, Stuyt LCPM (2012) Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J Hydrol 414–415 (302–316)
    • (2012) J Hydrol , vol.414-415 , Issue.302-316
    • Shiri, J.1    Kisi, Ö.2    Landeras, G.3    López, J.J.4    Nazemi, A.H.5    Stuyt, L.C.P.M.6
  • 34
    • 84908389436 scopus 로고    scopus 로고
    • Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment
    • Shrestha NK, Shukla S (2015) Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agric For Meterol 200:172–184 DOI: 10.1016/j.agrformet.2014.09.025
    • (2015) Agric For Meterol , vol.200 , pp. 172-184
    • Shrestha, N.K.1    Shukla, S.2
  • 35
    • 84946600204 scopus 로고    scopus 로고
    • Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages
    • Traorea S, Luoa YF, Fippsa G (2016) Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages. Agric Water Manag 163:363–379 DOI: 10.1016/j.agwat.2015.10.009
    • (2016) Agric Water Manag , vol.163 , pp. 363-379
    • Traorea, S.1    Luoa, Y.F.2    Fippsa, G.3
  • 37
    • 84951953853 scopus 로고    scopus 로고
    • The estimation of reference evapotranspiration based on gamma test and gene expression programming using the weather data set from different climatic zones in China
    • Wang Z, Yao LI, Guo Z (2015) The estimation of reference evapotranspiration based on gamma test and gene expression programming using the weather data set from different climatic zones in China. 2015 ASABE Annual International Meeting 152188992. http://dx.doi.org/10.13031/aim.20152188992
    • (2015) 2015 ASABE Annual International Meeting 152188992
    • Wang, Z.1    Yao, L.I.2    Guo, Z.3
  • 38
    • 84929959967 scopus 로고    scopus 로고
    • Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions
    • Wen X, Si J, He Z, Wu J, Shao H, Yu H (2015) Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resour Manag 29:3195–3209 DOI: 10.1007/s11269-015-0990-2
    • (2015) Water Resour Manag , vol.29 , pp. 3195-3209
    • Wen, X.1    Si, J.2    He, Z.3    Wu, J.4    Shao, H.5    Yu, H.6
  • 39
    • 33750840482 scopus 로고    scopus 로고
    • Prediction of continental-scale evapotranspiration by combining MODIS and Ameri Flux data through support vector machine
    • Yang F, White MA, Michaelis AR, Ichii K, Hashimoto H, Votava P, Zhu A, Nemani RR (2006) Prediction of continental-scale evapotranspiration by combining MODIS and Ameri Flux data through support vector machine. IEEE Trans Geosci Remote Sens 44(11):3452–3461 DOI: 10.1109/TGRS.2006.876297
    • (2006) IEEE Trans Geosci Remote Sens , vol.44 , Issue.11 , pp. 3452-3461
    • Yang, F.1    White, M.A.2    Michaelis, A.R.3    Ichii, K.4    Hashimoto, H.5    Votava, P.6    Zhu, A.7    Nemani, R.R.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.