-
3
-
-
60949107676
-
Co-active neurofuzzy inference system for evapotranspiration modeling
-
Aytek A (2008) Co-active neurofuzzy inference system for evapotranspiration modeling. Soft Comput 13(7):691–700 DOI: 10.1007/s00500-008-0342-8
-
(2008)
Soft Comput
, vol.13
, Issue.7
, pp. 691-700
-
-
Aytek, A.1
-
4
-
-
60749116339
-
Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
-
Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23(5):825–837 DOI: 10.1007/s11269-008-9301-5
-
(2009)
Water Resour Manag
, vol.23
, Issue.5
, pp. 825-837
-
-
Chauhan, S.1
Shrivastava, R.K.2
-
5
-
-
34249753618
-
Support vector networks
-
Kluwer Academic Publishers, Boston
-
Cortex C, Vapnik V (1995) Support vector networks. Kluwer Academic Publishers, Boston. Mach Learn 20:273–297
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortex, C.1
Vapnik, V.2
-
6
-
-
38849209134
-
An evolutionary approach to stream temperature analysis
-
Doglioni A, Giustolisi O, Savic DA, Webb BW (2007) An evolutionary approach to stream temperature analysis. Hydrol Process 22(3):315–326 DOI: 10.1002/hyp.6607
-
(2007)
Hydrol Process
, vol.22
, Issue.3
, pp. 315-326
-
-
Doglioni, A.1
Giustolisi, O.2
Savic, D.A.3
Webb, B.W.4
-
7
-
-
78049362919
-
Comparison of three data-driven techniques in modelling the evapotranspiration process
-
El-Baroudy I, Elshorbagy A, Carey SK, Giustolisi O, Savic DA (2010) Comparison of three data-driven techniques in modelling the evapotranspiration process. J Hydroinform 12(4):365. 10.2166/hydro.2010.029 DOI: 10.2166/hydro.2010.029
-
(2010)
J Hydroinform
, vol.12
, Issue.4
, pp. 365
-
-
El-Baroudy, I.1
Elshorbagy, A.2
Carey, S.K.3
Giustolisi, O.4
Savic, D.A.5
-
8
-
-
84861487810
-
Estimating Penman Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: a case study
-
Eslamian SS, Gohari SA, Zareian MJ, Firoozfar A (2012) Estimating Penman Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: a case study. Arabian J Sci Eng 37(4):935–994 DOI: 10.1007/s13369-012-0214-5
-
(2012)
Arabian J Sci Eng
, vol.37
, Issue.4
, pp. 935-994
-
-
Eslamian, S.S.1
Gohari, S.A.2
Zareian, M.J.3
Firoozfar, A.4
-
11
-
-
20844456071
-
Improving generalization of artificial neural networks in rainfall-runoff modeling
-
Giustolisi O, Laucelli D (2005) Improving generalization of artificial neural networks in rainfall-runoff modeling. Hydrol Sci J 50(3):439–457 DOI: 10.1623/hysj.50.3.439.65025
-
(2005)
Hydrol Sci J
, vol.50
, Issue.3
, pp. 439-457
-
-
Giustolisi, O.1
Laucelli, D.2
-
12
-
-
33744791952
-
A symbolic data-driven technique based on evolutionary polynomial regression
-
Giustolisi O, Savic DA (2006) A symbolic data-driven technique based on evolutionary polynomial regression. J Hydroinformatics 8(3):207–222. 10.2166/hydro.2006.020
-
(2006)
J Hydroinform
, vol.8
, Issue.3
, pp. 207-222
-
-
Giustolisi, O.1
Savic, D.A.2
-
13
-
-
33745024580
-
Optimal design of artificial neural networks by multi-objective strategy: groundwater level predictions
-
Giustolisi O, Simeone V (2006) Optimal design of artificial neural networks by multi-objective strategy: groundwater level predictions. Hydrol Sci J 51(3):502–523 DOI: 10.1623/hysj.51.3.502
-
(2006)
Hydrol Sci J
, vol.51
, Issue.3
, pp. 502-523
-
-
Giustolisi, O.1
Simeone, V.2
-
14
-
-
33845689247
-
A multi-model approach to analysis of environmental phenomena
-
Giustolisi O, Doglioni A, Savic DA, Webb BW (2007) A multi-model approach to analysis of environmental phenomena. Environ Model Softw 22(5):674–682 DOI: 10.1016/j.envsoft.2005.12.026
-
(2007)
Environ Model Softw
, vol.22
, Issue.5
, pp. 674-682
-
-
Giustolisi, O.1
Doglioni, A.2
Savic, D.A.3
Webb, B.W.4
-
15
-
-
0024880831
-
Multilayer feed forward networks are universal approximators
-
Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2(5):359–366 DOI: 10.1016/0893-6080(89)90020-8
-
(1989)
Neural Netw
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
16
-
-
84858714150
-
Artificial neural network models for reference evapotranspiration in an arid area of northwest China
-
Huo Z, Feng S, Kang S, Dai X (2012) Artificial neural network models for reference evapotranspiration in an arid area of northwest China. J Arid Environ 82:81–90 DOI: 10.1016/j.jaridenv.2012.01.016
-
(2012)
J Arid Environ
, vol.82
, pp. 81-90
-
-
Huo, Z.1
Feng, S.2
Kang, S.3
Dai, X.4
-
18
-
-
84857220245
-
Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique
-
Karimaldini F, Shui L (2012) Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique. J Irrig Drain Eng 138:21–34. 10.1061/(ASCE)IR.1943-4774.0000343 DOI: 10.1061/(ASCE)IR.1943-4774.0000343
-
(2012)
J Irrig Drain Eng
, vol.138
, pp. 21-34
-
-
Karimaldini, F.1
Shui, L.2
-
19
-
-
78650769552
-
Deciding the embedding nonlinear model dimensions and data size prior to daily reference evapotranspiration modeling
-
Karimaldini F, Shui LT, Abdollahi M, Khalili N (2010) Deciding the embedding nonlinear model dimensions and data size prior to daily reference evapotranspiration modeling. Aust J Basic Appl Sci 4(11):5668–5674
-
(2010)
Aust J Basic Appl Sci
, vol.4
, Issue.11
, pp. 5668-5674
-
-
Karimaldini, F.1
Shui, L.T.2
Abdollahi, M.3
Khalili, N.4
-
20
-
-
34447337473
-
Evapotranspiration modeling from climatic data using a neural computing technique
-
Kisi O (2007) Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol Process 21(6):1925–1934 DOI: 10.1002/hyp.6403
-
(2007)
Hydrol Process
, vol.21
, Issue.6
, pp. 1925-1934
-
-
Kisi, O.1
-
21
-
-
70349559015
-
Evapotranspiration modeling using support vector machines
-
Kisi O, Cimen M (2009) Evapotranspiration modeling using support vector machines. Hydrol Sci J 54(5):918–928 DOI: 10.1623/hysj.54.5.918
-
(2009)
Hydrol Sci J
, vol.54
, Issue.5
, pp. 918-928
-
-
Kisi, O.1
Cimen, M.2
-
22
-
-
84953791253
-
Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution
-
Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol 534:104–112 DOI: 10.1016/j.jhydrol.2015.12.014
-
(2016)
J Hydrol
, vol.534
, pp. 104-112
-
-
Kisi, O.1
Parmar, K.S.2
-
23
-
-
85017432781
-
Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline and m5 model tree models
-
Kisi O, Parmar KS, Soni K, Demir V (2017) Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline and m5 model tree models. Air Qual Atmos Health. 10.1007/s11869-017-0477-9
-
(2016)
Air Qual Atmos Health
-
-
Kisi, O.1
Parmar, K.S.2
Demir, V.3
-
24
-
-
34547756974
-
Discussion of generalized regression neural networks for evapotranspiration modeling
-
Koutsoyiannis D (2007) Discussion of generalized regression neural networks for evapotranspir- ration modeling. J Hydrol Sci 52(4):832–835 DOI: 10.1623/hysj.52.4.832
-
(2007)
J Hydrol Sci
, vol.52
, Issue.4
, pp. 832-835
-
-
Koutsoyiannis, D.1
-
25
-
-
84865618995
-
Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions
-
Laaboudi A, Mouhouche B, Draoui B (2012) Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions. IntJ Biometeorol 56:831–841 (831–841) DOI: 10.1007/s00484-011-0485-7
-
(2012)
IntJ Biometeorol
, vol.56
, pp. 831-841
-
-
Laaboudi, A.1
Mouhouche, B.2
Draoui, B.3
-
26
-
-
85086707346
-
-
Accessed 24 June 2017
-
Laucelli D, Berardi L, Doglioni A (2005) Evolutionary polynomial regression toolbox: version 1.SA. Department of Civil and Environmental Engineering, Technical University of Bari, Bari, Italy. http://www.hydroinformatics.it/prod02.htm. Accessed 24 June 2017
-
(2005)
Evolutionary polynomial regression toolbox: Version 1.SA. Department of Civil and Environmental Engineering, Technical University of Bari, Bari, Italy
-
-
Laucelli, D.1
Berardi, L.2
Doglioni, A.3
-
27
-
-
27744435513
-
A new approach for the prediction of ash fusion temperatures: a case study using Turkishlignites
-
Ozbayoglu G, Ozbayoglu ME (2006) A new approach for the prediction of ash fusion temperatures: a case study using Turkishlignites. Fuel 85:545–552 DOI: 10.1016/j.fuel.2004.12.020
-
(2006)
Fuel
, vol.85
, pp. 545-552
-
-
Ozbayoglu, G.1
Ozbayoglu, M.E.2
-
28
-
-
85057460110
-
Evaluation of temperature-based Penman–Monteith (TPM) model under the humid environment
-
Pandey PK, Pandey V (2016) Evaluation of temperature-based Penman–Monteith (TPM) model under the humid environment. Model Earth Syst Environ 2:152. 10.1007/s40808-016-0204-9 DOI: 10.1007/s40808-016-0204-9
-
(2016)
Model Earth Syst Environ
, vol.2
, pp. 152
-
-
Pandey, P.K.1
Pandey, V.2
-
29
-
-
84913612852
-
Calibration and performance verification of Hargreaves–Samani equation in a humid region
-
Pandey V, Pandey PK, Mahanta AP (2014) Calibration and performance verification of Hargreaves–Samani equation in a humid region. Irrig Drain 63:659–667 DOI: 10.1002/ird.1874
-
(2014)
Irrig Drain
, vol.63
, pp. 659-667
-
-
Pandey, V.1
Pandey, P.K.2
Mahanta, A.P.3
-
30
-
-
85020298889
-
Evaluation of reference evapotranspiration methods for the northeastern region of India
-
Pandey PK, Dabral PP, Pandey V (2016) Evaluation of reference evapotranspiration methods for the northeastern region of India. Int Soil Water Conserv Res. 10.1016/j.iswcr.2016.02.003
-
(2016)
Int Soil Water Conserv Res
-
-
Pandey, P.K.1
Dabral, P.P.2
Pandey, V.3
-
31
-
-
33845600932
-
Modeling the dynamics of the evapotranspiration process using genetic programming
-
Parasuraman K, Elshorbagy A, Carey SK (2007) Modeling the dynamics of the evapotranspiration process using genetic programming. J Hydrol Eng (ASCE) 12(1):52–62 DOI: 10.1061/(ASCE)1084-0699(2007)12:1(52)
-
(2007)
J Hydrol Eng (ASCE)
, vol.12
, Issue.1
, pp. 52-62
-
-
Parasuraman, K.1
Elshorbagy, A.2
Carey, S.K.3
-
32
-
-
84918593436
-
River water prediction modeling using neural networks, fuzzy and wavelet coupled model
-
Parmar KS, Bhardwaj R (2015) River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resour Manag 29(1):17–33 DOI: 10.1007/s11269-014-0824-7
-
(2015)
Water Resour Manag
, vol.29
, Issue.1
, pp. 17-33
-
-
Parmar, K.S.1
Bhardwaj, R.2
-
33
-
-
84855193767
-
Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
-
Shiri J, Kisi Ö., Landeras G, López JJ, Nazemi AH, Stuyt LCPM (2012) Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J Hydrol 414–415 (302–316)
-
(2012)
J Hydrol
, vol.414-415
, Issue.302-316
-
-
Shiri, J.1
Kisi, Ö.2
Landeras, G.3
López, J.J.4
Nazemi, A.H.5
Stuyt, L.C.P.M.6
-
34
-
-
84908389436
-
Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment
-
Shrestha NK, Shukla S (2015) Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agric For Meterol 200:172–184 DOI: 10.1016/j.agrformet.2014.09.025
-
(2015)
Agric For Meterol
, vol.200
, pp. 172-184
-
-
Shrestha, N.K.1
Shukla, S.2
-
35
-
-
84946600204
-
Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages
-
Traorea S, Luoa YF, Fippsa G (2016) Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages. Agric Water Manag 163:363–379 DOI: 10.1016/j.agwat.2015.10.009
-
(2016)
Agric Water Manag
, vol.163
, pp. 363-379
-
-
Traorea, S.1
Luoa, Y.F.2
Fippsa, G.3
-
37
-
-
84951953853
-
The estimation of reference evapotranspiration based on gamma test and gene expression programming using the weather data set from different climatic zones in China
-
Wang Z, Yao LI, Guo Z (2015) The estimation of reference evapotranspiration based on gamma test and gene expression programming using the weather data set from different climatic zones in China. 2015 ASABE Annual International Meeting 152188992. http://dx.doi.org/10.13031/aim.20152188992
-
(2015)
2015 ASABE Annual International Meeting 152188992
-
-
Wang, Z.1
Yao, L.I.2
Guo, Z.3
-
38
-
-
84929959967
-
Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions
-
Wen X, Si J, He Z, Wu J, Shao H, Yu H (2015) Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resour Manag 29:3195–3209 DOI: 10.1007/s11269-015-0990-2
-
(2015)
Water Resour Manag
, vol.29
, pp. 3195-3209
-
-
Wen, X.1
Si, J.2
He, Z.3
Wu, J.4
Shao, H.5
Yu, H.6
-
39
-
-
33750840482
-
Prediction of continental-scale evapotranspiration by combining MODIS and Ameri Flux data through support vector machine
-
Yang F, White MA, Michaelis AR, Ichii K, Hashimoto H, Votava P, Zhu A, Nemani RR (2006) Prediction of continental-scale evapotranspiration by combining MODIS and Ameri Flux data through support vector machine. IEEE Trans Geosci Remote Sens 44(11):3452–3461 DOI: 10.1109/TGRS.2006.876297
-
(2006)
IEEE Trans Geosci Remote Sens
, vol.44
, Issue.11
, pp. 3452-3461
-
-
Yang, F.1
White, M.A.2
Michaelis, A.R.3
Ichii, K.4
Hashimoto, H.5
Votava, P.6
Zhu, A.7
Nemani, R.R.8
|