메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Continuous control with deep reinforcement learning

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; MACHINE LEARNING; NETWORK ARCHITECTURE; REINFORCEMENT LEARNING;

EID: 85083953657     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4297)

References (30)
  • 4
    • 77953260848 scopus 로고    scopus 로고
    • States versus rewards: Dis-sociable neural prediction error signals underlying model-based and model-free reinforcement learning
    • Gläscher, Jan, Daw, Nathaniel, Dayan, Peter, and O’Doherty, John P. States versus rewards: dis-sociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66(4):585–595, 2010.
    • (2010) Neuron , vol.66 , Issue.4 , pp. 585-595
    • Gläscher, J.1    Daw, N.2    Dayan, P.3    O’Doherty, J.P.4
  • 6
    • 79958779459 scopus 로고    scopus 로고
    • Reinforcement learning in feedback control
    • Hafner, Roland and Riedmiller, Martin. Reinforcement learning in feedback control. Machine learning, 84(1-2):137–169, 2011.
    • (2011) Machine Learning , vol.84 , Issue.1-2 , pp. 137-169
    • Hafner, R.1    Riedmiller, M.2
  • 13
    • 84959255008 scopus 로고    scopus 로고
    • Online evolution of deep convolutional network for vision-based reinforcement learning
    • Springer
    • Koutník, Jan, Schmidhuber, Jürgen, and Gomez, Faustino. Online evolution of deep convolutional network for vision-based reinforcement learning. In From Animals to Animats 13, pp. 260–269. Springer, 2014b.
    • (2014) From Animals to Animats , vol.13 , pp. 260-269
    • Koutník, J.1    Schmidhuber, J.2    Gomez, F.3
  • 23
    • 23944452693 scopus 로고    scopus 로고
    • A generalized iterative lqg method for locally-optimal feedback control of constrained nonlinear stochastic systems
    • Todorov, Emanuel and Li, Weiwei. A generalized iterative lqg method for locally-optimal feedback control of constrained nonlinear stochastic systems. In American Control Conference, 2005. Proceedings of the 2005, pp. 300–306. IEEE, 2005.
    • (2005) American Control Conference, 2005. Proceedings of the 2005 , pp. 300-306
    • Todorov, E.1    Li, W.2
  • 25
    • 36149005118 scopus 로고
    • On the theory of the brownian motion
    • Uhlenbeck, George E and Ornstein, Leonard S. On the theory of the brownian motion. Physical review, 36(5):823, 1930.
    • (1930) Physical Review , vol.36 , Issue.5 , pp. 823
    • Uhlenbeck, G.E.1    Ornstein, L.S.2
  • 28
    • 71749106087 scopus 로고    scopus 로고
    • Real-time reinforcement learning by sequential actor–critics and experience replay
    • Wawrzynski, ´ Paweł. Real-time reinforcement learning by sequential actor–critics and experience replay. Neural Networks, 22(10):1484–1497, 2009.
    • (2009) Neural Networks , vol.22 , Issue.10 , pp. 1484-1497
    • Wawrzynski, P.1
  • 29
    • 85029148817 scopus 로고    scopus 로고
    • Control policy with autocorrelated noise in reinforcement learning for robotics
    • Wawrzynski, ´ Paweł. Control policy with autocorrelated noise in reinforcement learning for robotics. International Journal of Machine Learning and Computing, 5:91–95, 2015.
    • (2015) International Journal of Machine Learning and Computing , vol.5 , pp. 91-95
    • Wawrzynski, P.1
  • 30
    • 84875884428 scopus 로고    scopus 로고
    • Autonomous reinforcement learning with experience replay
    • Wawrzynski, ´ Paweł and Tanwani, Ajay Kumar. Autonomous reinforcement learning with experience replay. Neural Networks, 41:156–167, 2013.
    • (2013) Neural Networks , vol.41 , pp. 156-167
    • Wawrzynski, P.1    Tanwani, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.