메뉴 건너뛰기




Volumn , Issue , 2014, Pages 541-548

Evolving deep unsupervised convolutional networks for vision-based reinforcement learning

Author keywords

Deep learning; Games; Neuroevolution; Reinforcement learning; Vision based TORCS

Indexed keywords

CONTROLLERS; CONVOLUTION; CONVOLUTIONAL NEURAL NETWORKS; DEEP LEARNING; REINFORCEMENT LEARNING; VISION;

EID: 84905695541     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2576768.2598358     Document Type: Conference Paper
Times cited : (110)

References (24)
  • 1
    • 78649669320 scopus 로고    scopus 로고
    • Deep big simple neural nets for handwritten digit recognition
    • D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big simple neural nets for handwritten digit recognition. Neural Computation, 22(12):3207-3220, 2010.
    • (2010) Neural Computation , vol.22 , Issue.12 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 6
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaflected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaflected by shift in position. Biological Cybernetics, 36(4):193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 12
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • H. Kitano. Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4:461-476, 1990.
    • (1990) Complex Systems , vol.4 , pp. 461-476
    • Kitano, H.1
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 17
    • 78049417739 scopus 로고    scopus 로고
    • Reinforcement learning on slow features of high-dimensional input streams
    • R. Legenstein, N. Wilbert, and L. Wiskott. Reinforcement Learning on Slow Features of High-Dimensional Input Streams. PLoS Computational Biology, 6(8), 2010.
    • (2010) PLoS Computational Biology , vol.6 , Issue.8
    • Legenstein, R.1    Wilbert, N.2    Wiskott, L.3
  • 18
    • 0031147214 scopus 로고    scopus 로고
    • Map learning with uninterpreted sensors and effectors
    • D. Pierce and B. Kuipers. Map learning with uninterpreted sensors and effectors. Artificial Intelligence, 92:169-229, 1997.
    • (1997) Artificial Intelligence , vol.92 , pp. 169-229
    • Pierce, D.1    Kuipers, B.2
  • 21
    • 0031194381 scopus 로고    scopus 로고
    • Discovering neural nets with low Kolmogorov complexity and high generalization capability
    • J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks, 10(5):857-873, 1997.
    • (1997) Neural Networks , vol.10 , Issue.5 , pp. 857-873
    • Schmidhuber, J.1
  • 23
    • 2542485629 scopus 로고
    • Practical issues in temporal difference learning
    • D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors. Morgan Kaufmann, (NIPS)
    • G. Tesauro. Practical issues in temporal difference learning. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 4 (NIPS), pages 259-266. Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 259-266
    • Tesauro, G.1
  • 24
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.