메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Faster discovery of neural architectures by searching for paths in a large model

Author keywords

[No Author keywords available]

Indexed keywords

FORESTRY; NEURAL NETWORKS; STATISTICAL TESTS;

EID: 85083952791     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (44)
  • 1
    • 85079594941 scopus 로고    scopus 로고
    • Designing neural network architectures using reinforcement learning
    • Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architectures using reinforcement learning. In ICLR, 2017a.
    • (2017) ICLR
    • Baker, B.1    Gupta, O.2    Naik, N.3    Raskar, R.4
  • 3
    • 85140424199 scopus 로고    scopus 로고
    • Neural combinatorial optimization with reinforcement learning
    • Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with reinforcement learning. In ICLR Workshop, 2017a.
    • (2017) ICLR Workshop
    • Bello, I.1    Pham, H.2    Le, Q.V.3    Norouzi, M.4    Bengio, S.5
  • 4
    • 85044025205 scopus 로고    scopus 로고
    • Neural optimizer search with reinforcement learning
    • Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with reinforcement learning. In ICML, 2017b.
    • (2017) ICML
    • Bello, I.1    Zoph, B.2    Vasudevan, V.3    Le, Q.V.4
  • 12
    • 85019171807 scopus 로고    scopus 로고
    • A theoretically grounded application of dropout in recurrent neural networks
    • Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural networks. In NIPS, 2016.
    • (2016) NIPS
    • Gal, Y.1    Ghahramani, Z.2
  • 13
    • 85047002719 scopus 로고    scopus 로고
    • Shake-shake regularization of 3-branch residual networks
    • Xavier Gastaldi. Shake-shake regularization of 3-branch residual networks. In ICLR Workshop Track, 2016.
    • (2016) ICLR Workshop Track
    • Gastaldi, X.1
  • 14
    • 85088224685 scopus 로고    scopus 로고
    • Hypernetworks
    • David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In ICLR, 2017.
    • (2017) ICLR
    • Ha, D.1    Dai, A.2    Le, Q.V.3
  • 15
    • 85010862736 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • Kaiming He, Xiangyu Zhang, Shaoqing Rein, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In CVPR, 2015.
    • (2015) CVPR
    • He, K.1    Zhang, X.2    Rein, S.3    Sun, J.4
  • 16
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CPVR, 2016.
    • (2016) CPVR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 19
    • 85088226616 scopus 로고    scopus 로고
    • Tying word vectors and word classifiers: A loss framework for language modeling
    • Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: a loss framework for language modeling. In ICLR, 2017.
    • (2017) ICLR
    • Inan, H.1    Khosravi, K.2    Socher, R.3
  • 20
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 21
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.L.2
  • 24
    • 85075204691 scopus 로고    scopus 로고
    • FractalNet: Ultra-deep neural networks without residuals
    • Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks without residuals. In ICLR, 2017.
    • (2017) ICLR
    • Larsson, G.1    Maire, M.2    Shakhnarovich, G.3
  • 28
    • 85081410026 scopus 로고    scopus 로고
    • SGDR: Stochastic gradient descent with warm restarts
    • Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR, 2017.
    • (2017) ICLR
    • Loshchilov, I.1    Hutter, F.2
  • 32
    • 85057239604 scopus 로고    scopus 로고
    • Deeparchitect: Automatically designing and training deep architectures
    • Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep architectures. In CPVR, 2017.
    • (2017) CPVR
    • Negrinho, R.1    Gordon, G.2
  • 33
    • 84904461107 scopus 로고
    • Soviet Mathematics Doklady
    • 2). Soviet Mathematics Doklady, 1983.
    • (1983) 2)
    • Nesterov, Y.E.1
  • 35
    • 85019232626 scopus 로고    scopus 로고
    • Convolutional neural fabrics
    • Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In NIPS, 2016.
    • (2016) NIPS
    • Saxena, S.1    Verbeek, J.2
  • 36
    • 84986296808 scopus 로고    scopus 로고
    • Rethinking the inception architecture for computer vision
    • Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In CPVR, 2016.
    • (2016) CPVR
    • Szegedy, C.1    Vanhoucke, V.2    Ioffe, S.3    Shlens, J.4    Wojna, Z.5
  • 38
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 1992.
    • (1992) Machine Learning
    • Williams, R.J.1
  • 39
    • 0041154467 scopus 로고
    • Function optimization using connectionist reinforcement learning algorithms
    • Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algorithms. Connection Science, 3(3):241–268, 1991.
    • (1991) Connection Science , vol.3 , Issue.3 , pp. 241-268
    • Williams, R.J.1    Peng, J.2
  • 43
    • 85068717703 scopus 로고    scopus 로고
    • Neural architecture search with reinforcement learning
    • Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.
    • (2017) ICLR
    • Zoph, B.1    Le, Q.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.