-
1
-
-
85079594941
-
Designing neural network architectures using reinforcement learning
-
Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architectures using reinforcement learning. In ICLR, 2017a.
-
(2017)
ICLR
-
-
Baker, B.1
Gupta, O.2
Naik, N.3
Raskar, R.4
-
3
-
-
85140424199
-
Neural combinatorial optimization with reinforcement learning
-
Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with reinforcement learning. In ICLR Workshop, 2017a.
-
(2017)
ICLR Workshop
-
-
Bello, I.1
Pham, H.2
Le, Q.V.3
Norouzi, M.4
Bengio, S.5
-
4
-
-
85044025205
-
Neural optimizer search with reinforcement learning
-
Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with reinforcement learning. In ICML, 2017b.
-
(2017)
ICML
-
-
Bello, I.1
Zoph, B.2
Vasudevan, V.3
Le, Q.V.4
-
7
-
-
85055115822
-
-
Han Cai, Tianyao Chen, Weinan Zhang, Yong. Yu, and Jun Wang. Reinforcement learning for architecture search by network transformation. Arxiv, 1707.04873, 2017.
-
(2017)
Reinforcement Learning for Architecture Search by Network Transformation
-
-
Cai, H.1
Chen, T.2
Zhang, W.3
Yong, Y.4
Wang, J.5
-
11
-
-
85038214738
-
-
Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural networks. arXiv, 1701.08734, 2017.
-
(2017)
Pathnet: Evolution Channels Gradient Descent in Super Neural Networks
-
-
Fernando, C.1
Banarse, D.2
Blundell, C.3
Zwols, Y.4
Ha, D.5
Rusu, A.A.6
Pritzel, A.7
Wierstra, D.8
-
12
-
-
85019171807
-
A theoretically grounded application of dropout in recurrent neural networks
-
Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Gal, Y.1
Ghahramani, Z.2
-
13
-
-
85047002719
-
Shake-shake regularization of 3-branch residual networks
-
Xavier Gastaldi. Shake-shake regularization of 3-branch residual networks. In ICLR Workshop Track, 2016.
-
(2016)
ICLR Workshop Track
-
-
Gastaldi, X.1
-
15
-
-
85010862736
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
Kaiming He, Xiangyu Zhang, Shaoqing Rein, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In CVPR, 2015.
-
(2015)
CVPR
-
-
He, K.1
Zhang, X.2
Rein, S.3
Sun, J.4
-
16
-
-
84986274465
-
Deep residual learning for image recognition
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CPVR, 2016.
-
(2016)
CPVR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
19
-
-
85088226616
-
Tying word vectors and word classifiers: A loss framework for language modeling
-
Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: a loss framework for language modeling. In ICLR, 2017.
-
(2017)
ICLR
-
-
Inan, H.1
Khosravi, K.2
Socher, R.3
-
20
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
21
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.P.1
Ba, J.L.2
-
24
-
-
85075204691
-
FractalNet: Ultra-deep neural networks without residuals
-
Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks without residuals. In ICLR, 2017.
-
(2017)
ICLR
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
26
-
-
85055111162
-
-
Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. Arxiv, 1712.03351, 2017a.
-
(2017)
Progressive Neural Architecture Search
-
-
Liu, C.1
Zoph, B.2
Shlens, J.3
Hua, W.4
Li, L.-J.5
Fei-Fei, L.6
Yuille, A.7
Huang, J.8
Murphy, K.9
-
27
-
-
85050612902
-
-
Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical representations for efficient architecture search. Arxiv, 1711.00436, 2017b.
-
(2017)
Hierarchical Representations for Efficient Architecture Search
-
-
Liu, H.1
Simonyan, K.2
Vinyals, O.3
Fernando, C.4
Kavukcuoglu, K.5
-
28
-
-
85081410026
-
SGDR: Stochastic gradient descent with warm restarts
-
Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR, 2017.
-
(2017)
ICLR
-
-
Loshchilov, I.1
Hutter, F.2
-
29
-
-
5444243714
-
The penn treebank: Annotating predicate argument structure
-
Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate argument structure. In Proceedings of the Workshop on Human Language Technology, 1994.
-
(1994)
Proceedings of the Workshop on Human Language Technology
-
-
Marcus, M.1
Kim, G.2
Marcinkiewicz, M.A.3
MacIntyre, R.4
Bies, A.5
Ferguson, M.6
Katz, K.7
Schasberger, B.8
-
32
-
-
85057239604
-
Deeparchitect: Automatically designing and training deep architectures
-
Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep architectures. In CPVR, 2017.
-
(2017)
CPVR
-
-
Negrinho, R.1
Gordon, G.2
-
33
-
-
84904461107
-
-
Soviet Mathematics Doklady
-
2). Soviet Mathematics Doklady, 1983.
-
(1983)
2)
-
-
Nesterov, Y.E.1
-
34
-
-
85048592974
-
Large-scale evolution of image classifiers
-
Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. In ICML, 2017.
-
(2017)
ICML
-
-
Real, E.1
Moore, S.2
Selle, A.3
Saxena, S.4
Suematsu, Y.L.5
Tan, J.6
Le, Q.7
Kurakin, A.8
-
35
-
-
85019232626
-
Convolutional neural fabrics
-
Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In NIPS, 2016.
-
(2016)
NIPS
-
-
Saxena, S.1
Verbeek, J.2
-
36
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In CPVR, 2016.
-
(2016)
CPVR
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
38
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 1992.
-
(1992)
Machine Learning
-
-
Williams, R.J.1
-
39
-
-
0041154467
-
Function optimization using connectionist reinforcement learning algorithms
-
Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algorithms. Connection Science, 3(3):241–268, 1991.
-
(1991)
Connection Science
, vol.3
, Issue.3
, pp. 241-268
-
-
Williams, R.J.1
Peng, J.2
-
43
-
-
85068717703
-
Neural architecture search with reinforcement learning
-
Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.
-
(2017)
ICLR
-
-
Zoph, B.1
Le, Q.V.2
|