-
1
-
-
85039770602
-
Evaluation of support vector machine and artificial neural networks in weed detection using shape features
-
Bakhshipour, A., Jafari, A., Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput. Electron. Agric. 145 (2018), 153–160.
-
(2018)
Comput. Electron. Agric.
, vol.145
, pp. 153-160
-
-
Bakhshipour, A.1
Jafari, A.2
-
2
-
-
85048521317
-
Factors influencing the use of deep learning for plant disease recognition
-
Barbedo, J.G.A., Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172 (2018), 84–91.
-
(2018)
Biosyst. Eng.
, vol.172
, pp. 84-91
-
-
Barbedo, J.G.A.1
-
3
-
-
84904548965
-
Deep learning of representations for unsupervised and transfer learning
-
Bengio, Y., Deep learning of representations for unsupervised and transfer learning. J. Machine Learning Res., 2012, 17–37.
-
(2012)
J. Machine Learning Res.
, pp. 17-37
-
-
Bengio, Y.1
-
4
-
-
85081014086
-
Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
-
Bock, C.H., Poole, G.H., Parker, P.E., Gottwald, T.R., Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Biosyst. Eng. 172 (2010), 84–91.
-
(2010)
Biosyst. Eng.
, vol.172
, pp. 84-91
-
-
Bock, C.H.1
Poole, G.H.2
Parker, P.E.3
Gottwald, T.R.4
-
5
-
-
85080977518
-
Convolutional ladder networks for Legal NERC and the impact of unsupervised data in better generalizations
-
Cardellino, C., Alemany, L.A., Teruel, M., Villata, S., Marro, S., Convolutional ladder networks for Legal NERC and the impact of unsupervised data in better generalizations. The Thirty-Second International Florida Artificial Intelligence Research Society Conference (FLAIRS-32), 2016.
-
(2016)
The Thirty-Second International Florida Artificial Intelligence Research Society Conference (FLAIRS-32)
-
-
Cardellino, C.1
Alemany, L.A.2
Teruel, M.3
Villata, S.4
Marro, S.5
-
6
-
-
85080989223
-
-
An Analysis of Deep Neural Network Models for Practical Applications. arXiv:1605.07678.
-
Canziani, A., Paszke, A., Culurciello, E., 2017. An Analysis of Deep Neural Network Models for Practical Applications. arXiv:1605.07678.
-
(2017)
-
-
Canziani, A.1
Paszke, A.2
Culurciello, E.3
-
7
-
-
85080984792
-
-
others Keras.
-
Chollet, F., and others, 2015. Keras. https://keras.io.
-
(2015)
-
-
Chollet, F.1
-
9
-
-
34249753618
-
-
Support-Vector Networks. Machine Learning; 20(3):273–297. arXiv:1011.1669v3.
-
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning; 20(3):273–297. arXiv:1011.1669v3.
-
(1995)
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
85052023582
-
Pathway analysis using xgboost classification in biomedical data
-
Dimitrakopoulos, G.N., Vrahatis, A.G., Sgarbas, K., Plagianakos, V., Pathway analysis using xgboost classification in biomedical data. ACM International Conference Proceeding Series:1–6, 2018.
-
(2018)
ACM International Conference Proceeding Series:1–6
-
-
Dimitrakopoulos, G.N.1
Vrahatis, A.G.2
Sgarbas, K.3
Plagianakos, V.4
-
11
-
-
85081014528
-
-
European Crop Protection: With or without pesticides? URL:
-
European Crop Protection Agency (ECPA), 2017. European Crop Protection: With or without pesticides? URL: https://www.ecpa.eu/with-or-without.
-
(2017)
-
-
-
12
-
-
85041363919
-
Deep learning models for plant disease detection and diagnosis
-
Ferentinos, Konstantinos P., Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145 (2018), 311–318, 10.1016/j.compag.2018.01.009.
-
(2018)
Comput. Electron. Agric.
, vol.145
, pp. 311-318
-
-
Ferentinos, K.P.1
-
13
-
-
85080971847
-
-
The state of food and agriculture: food systems for better nutrition. arXiv:978-92-5-105980-7. 2009
-
Food and Agriculture Organization, 2013. The state of food and agriculture: food systems for better nutrition. volume 2, 2009. arXiv:978-92-5-105980-7.
-
(2013)
, vol.2
-
-
Food and Agriculture Organization1
-
15
-
-
76749142575
-
Precision agriculture and food security
-
Gebbers, R., Adamchuk, V.I., Precision agriculture and food security. Science 327:5967 (2010), 828–831.
-
(2010)
Science
, vol.327
, Issue.5967
, pp. 828-831
-
-
Gebbers, R.1
Adamchuk, V.I.2
-
16
-
-
84904705432
-
Plant classification system for crop/weed discrimination without segmentation
-
Haug, S., Michaels, A., Biber, P., Plant classification system for crop/weed discrimination without segmentation. IEEE Winter Conference on Applications of Computer Vision, 2014, 1142–1149.
-
(2014)
IEEE Winter Conference on Applications of Computer Vision
, pp. 1142-1149
-
-
Haug, S.1
Michaels, A.2
Biber, P.3
-
17
-
-
85080988047
-
A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks
-
Haug, S., Ostermann, J., A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: European Conference on Computer Vision, 2018, 1–12.
-
(2018)
In: European Conference on Computer Vision
, pp. 1-12
-
-
Haug, S.1
Ostermann, J.2
-
18
-
-
85080975192
-
-
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.arXiv:1704.04861v1.
-
Howard, A.G., Wang, W., Zhu, M., Chen, B., Kalenichenko, D., Weyand, T., Andreetto, M., Adam, H., 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.arXiv:1704.04861v1.
-
(2017)
-
-
Howard, A.G.1
Wang, W.2
Zhu, M.3
Chen, B.4
Kalenichenko, D.5
Weyand, T.6
Andreetto, M.7
Adam, H.8
-
19
-
-
85035343801
-
Densely connected convolutional networks
-
CVPR 2017 arXiv:1608.06993v5
-
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., Densely connected convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, 2017, CVPR 2017, 2261–2269 arXiv:1608.06993v5.
-
(2017)
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2261-2269
-
-
Huang, G.1
Liu, Z.2
Van Der Maaten, L.3
Weinberger, K.Q.4
-
20
-
-
40949087118
-
Shrink and share: humanity's present and future ecological footprint
-
Kitzes, J., Wackernagel, M., Loh, J., Peller, A., Goldfinger, S., Cheng, D., Tea, K., Shrink and share: humanity's present and future ecological footprint. Philos. Trans. Royal Soc. B: Biolog. Sci. 363:1491 (2008), 467–475.
-
(2008)
Philos. Trans. Royal Soc. B: Biolog. Sci.
, vol.363
, Issue.1491
, pp. 467-475
-
-
Kitzes, J.1
Wackernagel, M.2
Loh, J.3
Peller, A.4
Goldfinger, S.5
Cheng, D.6
Tea, K.7
-
21
-
-
0003555311
-
Logistic Regression: A self-learning text
-
Springer-Verlag N.Y.
-
Kleinbaum, D.G., Klein, M., Logistic Regression: A self-learning text. 1994, Springer-Verlag, N.Y.
-
(1994)
-
-
Kleinbaum, D.G.1
Klein, M.2
-
22
-
-
85004144044
-
Weed recognition framework for robotic precision
-
Kounalakis, T., Triantafyllidis, G.A., Nalpantidis, L., Weed recognition framework for robotic precision. farming. 2016 IEEE International Conference on Imaging Systems and, 2016.
-
(2016)
farming. 2016 IEEE International Conference on Imaging Systems and
-
-
Kounalakis, T.1
Triantafyllidis, G.A.2
Nalpantidis, L.3
-
23
-
-
85033445412
-
Image-based recognition framework for robotic weed control systems
-
Kounalakis, T., Triantafyllidis, G.A., Nalpantidis, L., Image-based recognition framework for robotic weed control systems. Multimedia Tools Appl 77:8 (2017), 9567–9594.
-
(2017)
Multimedia Tools Appl
, vol.77
, Issue.8
, pp. 9567-9594
-
-
Kounalakis, T.1
Triantafyllidis, G.A.2
Nalpantidis, L.3
-
24
-
-
85071398904
-
Deep learning-based visual recognition of rumex for robotic precision farming
-
Kounalakis, Tsampikos, Triantafyllidis, Georgios A., Nalpantidis, Lazaros, Deep learning-based visual recognition of rumex for robotic precision farming. Comput. Electron. Agric., 165, 2019, 104973, 10.1016/j.compag.2019.104973.
-
(2019)
Comput. Electron. Agric.
, vol.165
, pp. 104973
-
-
Kounalakis, T.1
Triantafyllidis, G.A.2
Nalpantidis, L.3
-
25
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
arXiv:1102.0183
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1097–1105 arXiv:1102.0183.
-
(2012)
Proceedings of the 25th International Conference on Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
84930630277
-
Deep learning
-
Lecun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
27
-
-
15344347807
-
Gradient-based learning applied to document recognition
-
IEEE
-
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. 1998, IEEE.
-
(1998)
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
28
-
-
84989347307
-
Effective vision-based classification for separating sugar beets and weeds for precision farming
-
Lottes, P., Hörferlin, M., Sander, S., Stachniss, C., Effective vision-based classification for separating sugar beets and weeds for precision farming. J. Field Rob. 34:6 (2016), 1160–1178.
-
(2016)
J. Field Rob.
, vol.34
, Issue.6
, pp. 1160-1178
-
-
Lottes, P.1
Hörferlin, M.2
Sander, S.3
Stachniss, C.4
-
29
-
-
85066738646
-
UAV-Based crop and weed classification for smart farming
-
Automation (ICRA)
-
Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., Stachniss, C., UAV-Based crop and weed classification for smart farming. 2017, Automation (ICRA).
-
(2017)
-
-
Lottes, P.1
Khanna, R.2
Pfeifer, J.3
Siegwart, R.4
Stachniss, C.5
-
30
-
-
85063152717
-
Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics
-
McCool, C., Perez, T., Upcroft, B., Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics. IEEE Rob. Autom. Lett. 2:3 (2017), 1344–1351.
-
(2017)
IEEE Rob. Autom. Lett.
, vol.2
, Issue.3
, pp. 1344-1351
-
-
McCool, C.1
Perez, T.2
Upcroft, B.3
-
31
-
-
85054826806
-
Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs
-
arXiv:arXiv:1709.06764v2
-
Milioto, A., Lottes, P., Stachniss, C., Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. Proc. IEEE Int. Conf. Robot. Autom., 2018 arXiv:arXiv:1709.06764v2.
-
(2018)
Proc. IEEE Int. Conf. Robot. Autom.
-
-
Milioto, A.1
Lottes, P.2
Stachniss, C.3
-
32
-
-
84988564472
-
Using deep learning for image-based plant disease detection. frontiers
-
September 1–10. arXiv:1604.03169
-
Mohanty, S.P., Hughes, D.P., Salathé, M., Using deep learning for image-based plant disease detection. frontiers. Plant Sci., 7, 2016 September 1–10. arXiv:1604.03169.
-
(2016)
Plant Sci.
, vol.7
-
-
Mohanty, S.P.1
Hughes, D.P.2
Salathé, M.3
-
33
-
-
33646235855
-
Crop losses to pests
-
Oerke, E., Crop losses to pests. J. Agri. Sci., 2006, 31–43.
-
(2006)
J. Agri. Sci.
, pp. 31-43
-
-
Oerke, E.1
-
34
-
-
0018306059
-
A threshold selection method from gray-level histograms
-
Otsu, N., A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9:1 (1979), 62–66, 10.1109/TSMC.1979.4310076.
-
(1979)
IEEE Trans. Syst. Man Cybernet.
, vol.9
, Issue.1
, pp. 62-66
-
-
Otsu, N.1
-
35
-
-
85013127753
-
Fast and accurate crop and weed identification with summarized train sets for precision agriculture
-
Potena, C., Nardi, D., Pretto, A., Fast and accurate crop and weed identification with summarized train sets for precision agriculture. Adv. Intelligent Syst. Comput 531 (2016), 105–121.
-
(2016)
Adv. Intelligent Syst. Comput
, vol.531
, pp. 105-121
-
-
Potena, C.1
Nardi, D.2
Pretto, A.3
-
36
-
-
33646739202
-
Methods of quantification of weeds and soybean leaf covers
-
Rizzardi, M., Fleck, N., Methods of quantification of weeds and soybean leaf covers. Ciencia Rural 34:1 (2004), 13–18.
-
(2004)
Ciencia Rural
, vol.34
, Issue.1
, pp. 13-18
-
-
Rizzardi, M.1
Fleck, N.2
-
37
-
-
85083953063
-
very deep convolutional networks for large-scale image recognition
-
arXiv:1409.1556
-
Simonyan, K., Zisserman, A., very deep convolutional networks for large-scale image recognition. ICLR 2015 (2014), 1–14 arXiv:1409.1556.
-
(2014)
ICLR
, vol.2015
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
38
-
-
85049898830
-
Transfer learning for the classification of sugar beet and volunteer potato under field conditions
-
Suh, H.K., Ijsselmuiden, J., Hofstee, J.W., van Henten, E.J., Transfer learning for the classification of sugar beet and volunteer potato under field conditions. Biosyst. Eng. 174 (2018), 50–65.
-
(2018)
Biosyst. Eng.
, vol.174
, pp. 50-65
-
-
Suh, H.K.1
Ijsselmuiden, J.2
Hofstee, J.W.3
van Henten, E.J.4
-
39
-
-
85028013193
-
Inception-v4, inception-ResNet and the impact of residual connections on learning
-
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., Inception-v4, inception-ResNet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence, 2016, 4278–4284.
-
(2016)
Thirty-First AAAI Conference on Artificial Intelligence
, pp. 4278-4284
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.A.4
-
40
-
-
84986296808
-
Rethinking the Inception Architecture for Computer Vision
-
2015-Decem:2818–2826:arXiv:1512.00567v3
-
Szegedy, C., Vanhoucke, V., Loffe, S., Shlens, J., Wojna, Z., Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015 2015-Decem:2818–2826:arXiv:1512.00567v3.
-
(2015)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
-
-
Szegedy, C.1
Vanhoucke, V.2
Loffe, S.3
Shlens, J.4
Wojna, Z.5
-
41
-
-
85081037806
-
-
Department of Economic and Social Affairs, Population Division World Population Prospects 2019, Online Edition.
-
United Nations (UN), Department of Economic and Social Affairs, Population Division, 2019. World Population Prospects 2019, Online Edition.
-
(2019)
-
-
-
42
-
-
85072920947
-
A booster analysis of extreme gradient boosting for cropclassification using PolSAR imagery
-
Ustuner, M., Sanli, F.B., Abdikan, S., Bilgin, G., Goksel, C., A booster analysis of extreme gradient boosting for cropclassification using PolSAR imagery. 8th International Conference on Agro-Geoinformatics, 2019.
-
(2019)
8th International Conference on Agro-Geoinformatics
-
-
Ustuner, M.1
Sanli, F.B.2
Abdikan, S.3
Bilgin, G.4
Goksel, C.5
-
43
-
-
85024478063
-
Automatic image-based plant disease severity estimation using deep learning
-
Wang, G., Sun, Y., Wang, J., Automatic image-based plant disease severity estimation using deep learning. Comput. Intelligence Neurosci., 2017, 2017, 8.
-
(2017)
Comput. Intelligence Neurosci.
, vol.2017
, pp. 8
-
-
Wang, G.1
Sun, Y.2
Wang, J.3
-
44
-
-
0029110322
-
Color indices for weed identification under various soil, residue, and lighting conditions
-
Woebbecke, D., Meyer, G., Von Bargen, K., Mortensen, D.A., Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE. American Society of Agricultural Engineers, 1995, 259–269.
-
(1995)
Transactions of the ASAE. American Society of Agricultural Engineers
, pp. 259-269
-
-
Woebbecke, D.1
Meyer, G.2
Von Bargen, K.3
Mortensen, D.A.4
-
45
-
-
85081021786
-
-
No Free Lunch Theorems for Optimization. Technical Report.
-
Wolpert, D.H., Macready, W.G., 1995. No Free Lunch Theorems for Optimization. Technical Report.
-
(1995)
-
-
Wolpert, D.H.1
Macready, W.G.2
-
46
-
-
85011072546
-
Understanding data augmentation for classification: when to warp?
-
Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D., Understanding data augmentation for classification: when to warp?. International Conference on Digital Image Computing: Techniques and Applications, DICTA 2016, 2016.
-
(2016)
International Conference on Digital Image Computing: Techniques and Applications, DICTA 2016
-
-
Wong, S.C.1
Gatt, A.2
Stamatescu, V.3
McDonnell, M.D.4
-
47
-
-
84905231063
-
Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
-
Zhou, R., Kaneko, S., Tanaka, F., Kayamori, M., Shimizu, M., Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition. Comput. Electron. Agric. 108 (2014), 58–70.
-
(2014)
Comput. Electron. Agric.
, vol.108
, pp. 58-70
-
-
Zhou, R.1
Kaneko, S.2
Tanaka, F.3
Kayamori, M.4
Shimizu, M.5
-
48
-
-
0004063096
-
Fundamentals of weed science
-
fifth ed. Academic Press Elsevier Inc
-
Zimdahl, R.L., Fundamentals of weed science. fifth ed., 2018, Academic Press Elsevier Inc.
-
(2018)
-
-
Zimdahl, R.L.1
|