메뉴 건너뛰기




Volumn 171, Issue , 2020, Pages

Towards weeds identification assistance through transfer learning

Author keywords

Deep learning; Open data; Precision agriculture; Transfer learning; Weed identification

Indexed keywords

AUTOMATIC IDENTIFICATION; COTTON; CROPS; DEEP LEARNING; LEARNING SYSTEMS; LOGISTIC REGRESSION; OPEN DATA; PRECISION AGRICULTURE; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 85081018738     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2020.105306     Document Type: Article
Times cited : (187)

References (48)
  • 1
    • 85039770602 scopus 로고    scopus 로고
    • Evaluation of support vector machine and artificial neural networks in weed detection using shape features
    • Bakhshipour, A., Jafari, A., Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput. Electron. Agric. 145 (2018), 153–160.
    • (2018) Comput. Electron. Agric. , vol.145 , pp. 153-160
    • Bakhshipour, A.1    Jafari, A.2
  • 2
    • 85048521317 scopus 로고    scopus 로고
    • Factors influencing the use of deep learning for plant disease recognition
    • Barbedo, J.G.A., Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172 (2018), 84–91.
    • (2018) Biosyst. Eng. , vol.172 , pp. 84-91
    • Barbedo, J.G.A.1
  • 3
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Bengio, Y., Deep learning of representations for unsupervised and transfer learning. J. Machine Learning Res., 2012, 17–37.
    • (2012) J. Machine Learning Res. , pp. 17-37
    • Bengio, Y.1
  • 4
    • 85081014086 scopus 로고    scopus 로고
    • Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
    • Bock, C.H., Poole, G.H., Parker, P.E., Gottwald, T.R., Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Biosyst. Eng. 172 (2010), 84–91.
    • (2010) Biosyst. Eng. , vol.172 , pp. 84-91
    • Bock, C.H.1    Poole, G.H.2    Parker, P.E.3    Gottwald, T.R.4
  • 6
    • 85080989223 scopus 로고    scopus 로고
    • An Analysis of Deep Neural Network Models for Practical Applications. arXiv:1605.07678.
    • Canziani, A., Paszke, A., Culurciello, E., 2017. An Analysis of Deep Neural Network Models for Practical Applications. arXiv:1605.07678.
    • (2017)
    • Canziani, A.1    Paszke, A.2    Culurciello, E.3
  • 7
    • 85080984792 scopus 로고    scopus 로고
    • others Keras.
    • Chollet, F., and others, 2015. Keras. https://keras.io.
    • (2015)
    • Chollet, F.1
  • 9
    • 34249753618 scopus 로고
    • Support-Vector Networks. Machine Learning; 20(3):273–297. arXiv:1011.1669v3.
    • Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning; 20(3):273–297. arXiv:1011.1669v3.
    • (1995)
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 85081014528 scopus 로고    scopus 로고
    • European Crop Protection: With or without pesticides? URL:
    • European Crop Protection Agency (ECPA), 2017. European Crop Protection: With or without pesticides? URL: https://www.ecpa.eu/with-or-without.
    • (2017)
  • 12
    • 85041363919 scopus 로고    scopus 로고
    • Deep learning models for plant disease detection and diagnosis
    • Ferentinos, Konstantinos P., Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145 (2018), 311–318, 10.1016/j.compag.2018.01.009.
    • (2018) Comput. Electron. Agric. , vol.145 , pp. 311-318
    • Ferentinos, K.P.1
  • 13
    • 85080971847 scopus 로고    scopus 로고
    • The state of food and agriculture: food systems for better nutrition. arXiv:978-92-5-105980-7. 2009
    • Food and Agriculture Organization, 2013. The state of food and agriculture: food systems for better nutrition. volume 2, 2009. arXiv:978-92-5-105980-7.
    • (2013) , vol.2
    • Food and Agriculture Organization1
  • 14
  • 15
    • 76749142575 scopus 로고    scopus 로고
    • Precision agriculture and food security
    • Gebbers, R., Adamchuk, V.I., Precision agriculture and food security. Science 327:5967 (2010), 828–831.
    • (2010) Science , vol.327 , Issue.5967 , pp. 828-831
    • Gebbers, R.1    Adamchuk, V.I.2
  • 17
    • 85080988047 scopus 로고    scopus 로고
    • A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks
    • Haug, S., Ostermann, J., A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: European Conference on Computer Vision, 2018, 1–12.
    • (2018) In: European Conference on Computer Vision , pp. 1-12
    • Haug, S.1    Ostermann, J.2
  • 18
    • 85080975192 scopus 로고    scopus 로고
    • MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.arXiv:1704.04861v1.
    • Howard, A.G., Wang, W., Zhu, M., Chen, B., Kalenichenko, D., Weyand, T., Andreetto, M., Adam, H., 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.arXiv:1704.04861v1.
    • (2017)
    • Howard, A.G.1    Wang, W.2    Zhu, M.3    Chen, B.4    Kalenichenko, D.5    Weyand, T.6    Andreetto, M.7    Adam, H.8
  • 21
    • 0003555311 scopus 로고
    • Logistic Regression: A self-learning text
    • Springer-Verlag N.Y.
    • Kleinbaum, D.G., Klein, M., Logistic Regression: A self-learning text. 1994, Springer-Verlag, N.Y.
    • (1994)
    • Kleinbaum, D.G.1    Klein, M.2
  • 23
    • 85033445412 scopus 로고    scopus 로고
    • Image-based recognition framework for robotic weed control systems
    • Kounalakis, T., Triantafyllidis, G.A., Nalpantidis, L., Image-based recognition framework for robotic weed control systems. Multimedia Tools Appl 77:8 (2017), 9567–9594.
    • (2017) Multimedia Tools Appl , vol.77 , Issue.8 , pp. 9567-9594
    • Kounalakis, T.1    Triantafyllidis, G.A.2    Nalpantidis, L.3
  • 24
    • 85071398904 scopus 로고    scopus 로고
    • Deep learning-based visual recognition of rumex for robotic precision farming
    • Kounalakis, Tsampikos, Triantafyllidis, Georgios A., Nalpantidis, Lazaros, Deep learning-based visual recognition of rumex for robotic precision farming. Comput. Electron. Agric., 165, 2019, 104973, 10.1016/j.compag.2019.104973.
    • (2019) Comput. Electron. Agric. , vol.165 , pp. 104973
    • Kounalakis, T.1    Triantafyllidis, G.A.2    Nalpantidis, L.3
  • 27
    • 15344347807 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • IEEE
    • Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. 1998, IEEE.
    • (1998)
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 28
    • 84989347307 scopus 로고    scopus 로고
    • Effective vision-based classification for separating sugar beets and weeds for precision farming
    • Lottes, P., Hörferlin, M., Sander, S., Stachniss, C., Effective vision-based classification for separating sugar beets and weeds for precision farming. J. Field Rob. 34:6 (2016), 1160–1178.
    • (2016) J. Field Rob. , vol.34 , Issue.6 , pp. 1160-1178
    • Lottes, P.1    Hörferlin, M.2    Sander, S.3    Stachniss, C.4
  • 29
    • 85066738646 scopus 로고    scopus 로고
    • UAV-Based crop and weed classification for smart farming
    • Automation (ICRA)
    • Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., Stachniss, C., UAV-Based crop and weed classification for smart farming. 2017, Automation (ICRA).
    • (2017)
    • Lottes, P.1    Khanna, R.2    Pfeifer, J.3    Siegwart, R.4    Stachniss, C.5
  • 30
    • 85063152717 scopus 로고    scopus 로고
    • Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics
    • McCool, C., Perez, T., Upcroft, B., Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics. IEEE Rob. Autom. Lett. 2:3 (2017), 1344–1351.
    • (2017) IEEE Rob. Autom. Lett. , vol.2 , Issue.3 , pp. 1344-1351
    • McCool, C.1    Perez, T.2    Upcroft, B.3
  • 31
    • 85054826806 scopus 로고    scopus 로고
    • Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs
    • arXiv:arXiv:1709.06764v2
    • Milioto, A., Lottes, P., Stachniss, C., Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. Proc. IEEE Int. Conf. Robot. Autom., 2018 arXiv:arXiv:1709.06764v2.
    • (2018) Proc. IEEE Int. Conf. Robot. Autom.
    • Milioto, A.1    Lottes, P.2    Stachniss, C.3
  • 32
    • 84988564472 scopus 로고    scopus 로고
    • Using deep learning for image-based plant disease detection. frontiers
    • September 1–10. arXiv:1604.03169
    • Mohanty, S.P., Hughes, D.P., Salathé, M., Using deep learning for image-based plant disease detection. frontiers. Plant Sci., 7, 2016 September 1–10. arXiv:1604.03169.
    • (2016) Plant Sci. , vol.7
    • Mohanty, S.P.1    Hughes, D.P.2    Salathé, M.3
  • 33
    • 33646235855 scopus 로고    scopus 로고
    • Crop losses to pests
    • Oerke, E., Crop losses to pests. J. Agri. Sci., 2006, 31–43.
    • (2006) J. Agri. Sci. , pp. 31-43
    • Oerke, E.1
  • 34
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu, N., A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9:1 (1979), 62–66, 10.1109/TSMC.1979.4310076.
    • (1979) IEEE Trans. Syst. Man Cybernet. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 35
    • 85013127753 scopus 로고    scopus 로고
    • Fast and accurate crop and weed identification with summarized train sets for precision agriculture
    • Potena, C., Nardi, D., Pretto, A., Fast and accurate crop and weed identification with summarized train sets for precision agriculture. Adv. Intelligent Syst. Comput 531 (2016), 105–121.
    • (2016) Adv. Intelligent Syst. Comput , vol.531 , pp. 105-121
    • Potena, C.1    Nardi, D.2    Pretto, A.3
  • 36
    • 33646739202 scopus 로고    scopus 로고
    • Methods of quantification of weeds and soybean leaf covers
    • Rizzardi, M., Fleck, N., Methods of quantification of weeds and soybean leaf covers. Ciencia Rural 34:1 (2004), 13–18.
    • (2004) Ciencia Rural , vol.34 , Issue.1 , pp. 13-18
    • Rizzardi, M.1    Fleck, N.2
  • 37
    • 85083953063 scopus 로고    scopus 로고
    • very deep convolutional networks for large-scale image recognition
    • arXiv:1409.1556
    • Simonyan, K., Zisserman, A., very deep convolutional networks for large-scale image recognition. ICLR 2015 (2014), 1–14 arXiv:1409.1556.
    • (2014) ICLR , vol.2015 , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 38
    • 85049898830 scopus 로고    scopus 로고
    • Transfer learning for the classification of sugar beet and volunteer potato under field conditions
    • Suh, H.K., Ijsselmuiden, J., Hofstee, J.W., van Henten, E.J., Transfer learning for the classification of sugar beet and volunteer potato under field conditions. Biosyst. Eng. 174 (2018), 50–65.
    • (2018) Biosyst. Eng. , vol.174 , pp. 50-65
    • Suh, H.K.1    Ijsselmuiden, J.2    Hofstee, J.W.3    van Henten, E.J.4
  • 41
    • 85081037806 scopus 로고    scopus 로고
    • Department of Economic and Social Affairs, Population Division World Population Prospects 2019, Online Edition.
    • United Nations (UN), Department of Economic and Social Affairs, Population Division, 2019. World Population Prospects 2019, Online Edition.
    • (2019)
  • 43
    • 85024478063 scopus 로고    scopus 로고
    • Automatic image-based plant disease severity estimation using deep learning
    • Wang, G., Sun, Y., Wang, J., Automatic image-based plant disease severity estimation using deep learning. Comput. Intelligence Neurosci., 2017, 2017, 8.
    • (2017) Comput. Intelligence Neurosci. , vol.2017 , pp. 8
    • Wang, G.1    Sun, Y.2    Wang, J.3
  • 45
    • 85081021786 scopus 로고
    • No Free Lunch Theorems for Optimization. Technical Report.
    • Wolpert, D.H., Macready, W.G., 1995. No Free Lunch Theorems for Optimization. Technical Report.
    • (1995)
    • Wolpert, D.H.1    Macready, W.G.2
  • 47
    • 84905231063 scopus 로고    scopus 로고
    • Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
    • Zhou, R., Kaneko, S., Tanaka, F., Kayamori, M., Shimizu, M., Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition. Comput. Electron. Agric. 108 (2014), 58–70.
    • (2014) Comput. Electron. Agric. , vol.108 , pp. 58-70
    • Zhou, R.1    Kaneko, S.2    Tanaka, F.3    Kayamori, M.4    Shimizu, M.5
  • 48
    • 0004063096 scopus 로고    scopus 로고
    • Fundamentals of weed science
    • fifth ed. Academic Press Elsevier Inc
    • Zimdahl, R.L., Fundamentals of weed science. fifth ed., 2018, Academic Press Elsevier Inc.
    • (2018)
    • Zimdahl, R.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.