-
1
-
-
77951926420
-
Etiology of type 1 diabetes
-
J. A. Todd, Etiology of type 1 diabetes. Immunity 32, 457–467 (2010).
-
(2010)
Immunity
, vol.32
, pp. 457-467
-
-
Todd, J.A.1
-
2
-
-
34247627376
-
Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients
-
F. Dotta et al., Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. Acad. Sci. U.S.A. 104, 5115–5120 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 5115-5120
-
-
Dotta, F.1
-
3
-
-
0033853920
-
Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes
-
M. C. Honeyman et al., Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49, 1319–1324 (2000).
-
(2000)
Diabetes
, vol.49
, pp. 1319-1324
-
-
Honeyman, M.C.1
-
4
-
-
0033032385
-
Cow’s milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes
-
O. Vaarala et al., Cow’s milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes. Diabetes 48, 1389–1394 (1999).
-
(1999)
Diabetes
, vol.48
, pp. 1389-1394
-
-
Vaarala, O.1
-
5
-
-
0141816761
-
Timing of initial cereal exposure in infancy and risk of islet autoimmunity
-
J. M. Norris et al., Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290, 1713–1720 (2003).
-
(2003)
JAMA
, vol.290
, pp. 1713-1720
-
-
Norris, J.M.1
-
6
-
-
54549122338
-
Innate immunity and intestinal microbiota in the development of type 1 diabetes
-
L. Wen et al., Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).
-
(2008)
Nature
, vol.455
, pp. 1109-1113
-
-
Wen, L.1
-
7
-
-
78650616947
-
Toward defining the autoimmune microbiome for type 1 diabetes
-
A. Giongo et al., Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5, 82–91 (2011).
-
(2011)
ISME J
, vol.5
, pp. 82-91
-
-
Giongo, A.1
-
8
-
-
80054722148
-
Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes
-
C. T. Brown et al., Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, e25792 (2011).
-
(2011)
PLoS One
, vol.6
-
-
Brown, C.T.1
-
9
-
-
84964682615
-
Variation in microbiome LPS immu-nogenicity contributes to autoimmunity in humans
-
T. Vatanen et al.; DIABIMMUNE Study Group, Variation in microbiome LPS immu-nogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).
-
(2016)
Cell
, vol.165
, pp. 842-853
-
-
Vatanen, T.1
-
10
-
-
80052829380
-
+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes
-
+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes. Diabetes 60, 2120–2124 (2011).
-
(2011)
Diabetes
, vol.60
, pp. 2120-2124
-
-
Badami, E.1
-
11
-
-
85055415843
-
The human gut microbiome in early-onset type 1 diabetes from the TEDDY study
-
T. Vatanen et al., The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018).
-
(2018)
Nature
, vol.562
, pp. 589-594
-
-
Vatanen, T.1
-
12
-
-
0032937027
-
Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat
-
J. B. Meddings, J. Jarand, S. J. Urbanski, J. Hardin, D. G. Gall, Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am. J. Physiol. 276, G951–G957 (1999).
-
(1999)
Am. J. Physiol.
, vol.276
, pp. G951-G957
-
-
Meddings, J.B.1
Jarand, J.2
Urbanski, S.J.3
Hardin, J.4
Gall, D.G.5
-
13
-
-
4644329209
-
Enteropathy precedes type 1 diabetes in the BB rat
-
S. Graham et al., Enteropathy precedes type 1 diabetes in the BB rat. Gut 53, 1437–1444 (2004).
-
(2004)
Gut
, vol.53
, pp. 1437-1444
-
-
Graham, S.1
-
14
-
-
20044367675
-
Small intestinal enteropathy in non-obese diabetic mice fed a diet containing wheat
-
F. Maurano et al., Small intestinal enteropathy in non-obese diabetic mice fed a diet containing wheat. Diabetologia 48, 931–937 (2005).
-
(2005)
Diabetologia
, vol.48
, pp. 931-937
-
-
Maurano, F.1
-
15
-
-
0022624912
-
Abnormal intestinal permeability to sugars in diabetes mellitus
-
A. D. Mooradian, J. E. Morley, A. S. Levine, W. F. Prigge, R. L. Gebhard, Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 29, 221–224 (1986).
-
(1986)
Diabetologia
, vol.29
, pp. 221-224
-
-
Mooradian, A.D.1
Morley, J.E.2
Levine, A.S.3
Prigge, W.F.4
Gebhard, R.L.5
-
16
-
-
0032976426
-
Altered intestinal permeability to mannitol in diabetes mellitus type I
-
R. Carratù et al., Altered intestinal permeability to mannitol in diabetes mellitus type I. J. Pediatr. Gastroenterol. Nutr. 28, 264–269 (1999).
-
(1999)
J. Pediatr. Gastroenterol. Nutr.
, vol.28
, pp. 264-269
-
-
Carratù, R.1
-
17
-
-
0041820123
-
Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes
-
M. Westerholm-Ormio, O. Vaarala, P. Pihkala, J. Ilonen, E. Savilahti, Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes 52, 2287–2295 (2003).
-
(2003)
Diabetes
, vol.52
, pp. 2287-2295
-
-
Westerholm-Ormio, M.1
Vaarala, O.2
Pihkala, P.3
Ilonen, J.4
Savilahti, E.5
-
18
-
-
11144353743
-
Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients
-
M. Secondulfo et al., Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig. Liver Dis. 36, 35–45 (2004).
-
(2004)
Dig. Liver Dis.
, vol.36
, pp. 35-45
-
-
Secondulfo, M.1
-
19
-
-
33750906233
-
Increased intestinal permeability precedes clinical onset of type 1 diabetes
-
E. Bosi et al., Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49, 2824–2827 (2006).
-
(2006)
Diabetologia
, vol.49
, pp. 2824-2827
-
-
Bosi, E.1
-
20
-
-
20944431723
-
Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes
-
J. Neu et al., Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes. J. Pediatr. Gastroenterol. Nutr. 40, 589–595 (2005).
-
(2005)
J. Pediatr. Gastroenterol. Nutr.
, vol.40
, pp. 589-595
-
-
Neu, J.1
-
21
-
-
58149091806
-
The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity
-
O. Vaarala, M. A. Atkinson, J. Neu, The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57, 2555–2562 (2008).
-
(2008)
Diabetes
, vol.57
, pp. 2555-2562
-
-
Vaarala, O.1
Atkinson, M.A.2
Neu, J.3
-
22
-
-
84940998804
-
Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota
-
J. Sun et al., Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43, 304–317 (2015).
-
(2015)
Immunity
, vol.43
, pp. 304-317
-
-
Sun, J.1
-
23
-
-
29144508394
-
Endocrine self and gut non-self intersect in the pancreatic lymph nodes
-
S. J. Turley, J. W. Lee, N. Dutton-Swain, D. Mathis, C. Benoist, Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc. Natl. Acad. Sci. U.S.A. 102, 17729–17733 (2005).
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 17729-17733
-
-
Turley, S.J.1
Lee, J.W.2
Dutton-Swain, N.3
Mathis, D.4
Benoist, C.5
-
24
-
-
33745311630
-
Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives
-
A. Sapone et al., Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55, 1443–1449 (2006).
-
(2006)
Diabetes
, vol.55
, pp. 1443-1449
-
-
Sapone, A.1
-
25
-
-
84902578841
-
The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system
-
T. Pelaseyed et al., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260, 8–20 (2014).
-
(2014)
Immunol. Rev.
, vol.260
, pp. 8-20
-
-
Pelaseyed, T.1
-
27
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
P. M. Smith et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
-
28
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
N. Arpaia et al., Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
-
29
-
-
84862862332
-
Epithelial antimicrobial defence of the skin and intestine
-
R. L. Gallo, L. V. Hooper, Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12, 503–516 (2012).
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 503-516
-
-
Gallo, R.L.1
Hooper, L.V.2
-
30
-
-
85009494276
-
Defensins, lectins, mucins, and secretory immunoglobulin A: Microbe-binding biomolecules that contribute to mucosal immunity in the human gut
-
P. Chairatana, E. M. Nolan, Defensins, lectins, mucins, and secretory immunoglobulin A: Microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit. Rev. Biochem. Mol. Biol. 52, 45–56 (2017).
-
(2017)
Crit. Rev. Biochem. Mol. Biol.
, vol.52
, pp. 45-56
-
-
Chairatana, P.1
Nolan, E.M.2
-
31
-
-
84886280379
-
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
-
M. Shan et al., Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447–453 (2013).
-
(2013)
Science
, vol.342
, pp. 447-453
-
-
Shan, M.1
-
32
-
-
84876368974
-
MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli
-
Y. H. Sheng et al., MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 6, 557–568 (2013).
-
(2013)
Mucosal Immunol
, vol.6
, pp. 557-568
-
-
Sheng, Y.H.1
-
33
-
-
21644436520
-
Quantitative and qualitative alterations of intestinal mucins in BioBreeding rats
-
P. Courtois, C. Jurysta, A. Sener, F. W. Scott, W. J. Malaisse, Quantitative and qualitative alterations of intestinal mucins in BioBreeding rats. Int. J. Mol. Med. 15, 105–108 (2005).
-
(2005)
Int. J. Mol. Med.
, vol.15
, pp. 105-108
-
-
Courtois, P.1
Jurysta, C.2
Sener, A.3
Scott, F.W.4
Malaisse, W.J.5
-
34
-
-
0346121480
-
Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice
-
I. Jaakkola, S. Jalkanen, A. Hänninen, Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur. J. Immunol. 33, 3255–3264 (2003).
-
(2003)
Eur. J. Immunol.
, vol.33
, pp. 3255-3264
-
-
Jaakkola, I.1
Jalkanen, S.2
Hänninen, A.3
-
35
-
-
0027378612
-
Following a diabetogenic T cell from genesis through pathogenesis
-
J. D. Katz, B. Wang, K. Haskins, C. Benoist, D. Mathis, Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).
-
(1993)
Cell
, vol.74
, pp. 1089-1100
-
-
Katz, J.D.1
Wang, B.2
Haskins, K.3
Benoist, C.4
Mathis, D.5
-
36
-
-
0024226752
-
T-lymphocyte clone specific for pancreatic islet antigen
-
K. Haskins, M. Portas, B. Bradley, D. Wegmann, K. Lafferty, T-lymphocyte clone specific for pancreatic islet antigen. Diabetes 37, 1444–1448 (1988).
-
(1988)
Diabetes
, vol.37
, pp. 1444-1448
-
-
Haskins, K.1
Portas, M.2
Bradley, B.3
Wegmann, D.4
Lafferty, K.5
-
37
-
-
0030879734
-
Mechanism underlying counter-regulation of autoimmune diabetes by IL-4
-
R. Mueller, L. M. Bradley, T. Krahl, N. Sarvetnick, Mechanism underlying counter-regulation of autoimmune diabetes by IL-4. Immunity 7, 411–418 (1997).
-
(1997)
Immunity
, vol.7
, pp. 411-418
-
-
Mueller, R.1
Bradley, L.M.2
Krahl, T.3
Sarvetnick, N.4
-
38
-
-
0031874342
-
Diabetes induced by Coxsackie virus: Initiation by bystander damage and not molecular mimicry
-
M. S. Horwitz et al., Diabetes induced by Coxsackie virus: Initiation by bystander damage and not molecular mimicry. Nat. Med. 4, 781–785 (1998).
-
(1998)
Nat. Med.
, vol.4
, pp. 781-785
-
-
Horwitz, M.S.1
-
39
-
-
77957906400
-
Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model
-
M. E. Johansson et al., Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS One 5, e12238 (2010).
-
(2010)
PLoS One
, vol.5
-
-
Johansson, M.E.1
-
40
-
-
85012298937
-
Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis
-
C. Hernández-Chirlaque et al., Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J. Crohns Colitis 10, 1324–1335 (2016).
-
(2016)
J. Crohns Colitis
, vol.10
, pp. 1324-1335
-
-
Hernández-Chirlaque, C.1
-
41
-
-
84992179892
-
Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice
-
N. Tai et al., Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. J. Exp. Med. 213, 2129–2146 (2016).
-
(2016)
J. Exp. Med.
, vol.213
, pp. 2129-2146
-
-
Tai, N.1
-
42
-
-
84977625421
-
Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset
-
F. R. Costa et al., Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset. J. Exp. Med. 213, 1223–1239 (2016).
-
(2016)
J. Exp. Med.
, vol.213
, pp. 1223-1239
-
-
Costa, F.R.1
-
43
-
-
84942984042
-
The role for gut permeability in the pathogenesis of type 1 diabetes—a solid or leaky concept?
-
X. Li, M. A. Atkinson, The role for gut permeability in the pathogenesis of type 1 diabetes—a solid or leaky concept? Pediatr. Diabetes 16, 485–492 (2015).
-
(2015)
Pediatr. Diabetes
, vol.16
, pp. 485-492
-
-
Li, X.1
Atkinson, M.A.2
-
44
-
-
55749100160
-
Leaking gut in type 1 diabetes
-
O. Vaarala, Leaking gut in type 1 diabetes. Curr. Opin. Gastroenterol. 24, 701–706 (2008).
-
(2008)
Curr. Opin. Gastroenterol.
, vol.24
, pp. 701-706
-
-
Vaarala, O.1
-
45
-
-
84858705545
-
Is the origin of type 1 diabetes in the gut?
-
O. Vaarala, Is the origin of type 1 diabetes in the gut? Immunol. Cell Biol. 90, 271–276 (2012).
-
(2012)
Immunol. Cell Biol.
, vol.90
, pp. 271-276
-
-
Vaarala, O.1
-
46
-
-
85049963474
-
Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice
-
A. Hänninen et al., Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 67, 1445–1453 (2018).
-
(2018)
Gut
, vol.67
, pp. 1445-1453
-
-
Hänninen, A.1
-
47
-
-
84904012037
-
Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity
-
H. Brauner et al., Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin. Exp. Immunol. 177, 478–482 (2014).
-
(2014)
Clin. Exp. Immunol.
, vol.177
, pp. 478-482
-
-
Brauner, H.1
-
48
-
-
0027368141
-
Spontaneous loss of T-cell tolerance to glutamic acid de-carboxylase in murine insulin-dependent diabetes
-
D. L. Kaufman et al., Spontaneous loss of T-cell tolerance to glutamic acid de-carboxylase in murine insulin-dependent diabetes. Nature 366, 69–72 (1993).
-
(1993)
Nature
, vol.366
, pp. 69-72
-
-
Kaufman, D.L.1
-
49
-
-
84976440571
-
Regulation of the intestinal barrier function by host defense peptides
-
K. Robinson, Z. Deng, Y. Hou, G. Zhang, Regulation of the intestinal barrier function by host defense peptides. Front. Vet. Sci. 2, 57 (2015).
-
(2015)
Front. Vet. Sci.
, vol.2
, pp. 57
-
-
Robinson, K.1
Deng, Z.2
Hou, Y.3
Zhang, G.4
-
50
-
-
84902590860
-
REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum
-
L. M. Loonen et al., REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol. 7, 939–947 (2014).
-
(2014)
Mucosal Immunol
, vol.7
, pp. 939-947
-
-
Loonen, L.M.1
-
51
-
-
80054866423
-
Cathelicidin signaling via the Toll-like receptor protects against colitis in mice
-
e1-3
-
H. W. Koon et al., Cathelicidin signaling via the Toll-like receptor protects against colitis in mice. Gastroenterology 141, 1852–1863.e1-3 (2011).
-
(2011)
Gastroenterology
, vol.141
, pp. 1852-1863
-
-
Koon, H.W.1
-
52
-
-
77949272755
-
Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice
-
A. S. Lee et al., Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 53, 741–748 (2010).
-
(2010)
Diabetologia
, vol.53
, pp. 741-748
-
-
Lee, A.S.1
-
53
-
-
81855167104
-
Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination
-
K. Berer et al., Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).
-
(2011)
Nature
, vol.479
, pp. 538-541
-
-
Berer, K.1
-
54
-
-
76949098835
-
Chromogranin A is an autoantigen in type 1 diabetes
-
B. D. Stadinski et al., Chromogranin A is an autoantigen in type 1 diabetes. Nat. Immunol. 11, 225–231 (2010).
-
(2010)
Nat. Immunol.
, vol.11
, pp. 225-231
-
-
Stadinski, B.D.1
-
55
-
-
0029846074
-
Occurrence of WE-14 and chromogranin A-derived peptides in tissues of the human and bovine gastro-entero-pancreatic system and in human neuroendocrine neoplasia
-
C. M. Gleeson, W. J. Curry, C. F. Johnston, K. D. Buchanan, Occurrence of WE-14 and chromogranin A-derived peptides in tissues of the human and bovine gastro-entero-pancreatic system and in human neuroendocrine neoplasia. J. Endocrinol. 151, 409–420 (1996).
-
(1996)
J. Endocrinol.
, vol.151
, pp. 409-420
-
-
Gleeson, C.M.1
Curry, W.J.2
Johnston, C.F.3
Buchanan, K.D.4
-
56
-
-
0034472075
-
Chromogranin A and its derived peptides in the rat and porcine gastro-entero-pancreatic system. Expression, localization, and characterization
-
W. J. Curry et al., Chromogranin A and its derived peptides in the rat and porcine gastro-entero-pancreatic system. Expression, localization, and characterization. Adv. Exp. Med. Biol. 482, 205–213 (2000).
-
(2000)
Adv. Exp. Med. Biol.
, vol.482
, pp. 205-213
-
-
Curry, W.J.1
-
57
-
-
84900454276
-
Shaping the (auto)immune response in the gut: The role of intestinal immune regulation in the prevention of type 1 diabetes
-
C. Sorini, M. Falcone, Shaping the (auto)immune response in the gut: The role of intestinal immune regulation in the prevention of type 1 diabetes. Am. J. Clin. Exp. Immunol. 2, 156–171 (2013).
-
(2013)
Am. J. Clin. Exp. Immunol.
, vol.2
, pp. 156-171
-
-
Sorini, C.1
Falcone, M.2
-
58
-
-
84958116286
-
The role of the intestinal microbiota in type 1 diabetes mellitus
-
M. Knip, H. Siljander, The role of the intestinal microbiota in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 12, 154–167 (2016).
-
(2016)
Nat. Rev. Endocrinol.
, vol.12
, pp. 154-167
-
-
Knip, M.1
Siljander, H.2
-
59
-
-
0028003794
-
The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats
-
J. D. Taurog et al., The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).
-
(1994)
J. Exp. Med.
, vol.180
, pp. 2359-2364
-
-
Taurog, J.D.1
-
60
-
-
79952142398
-
The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions
-
C. King, N. Sarvetnick, The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. PLoS One 6, e17049 (2011).
-
(2011)
PLoS One
, vol.6
-
-
King, C.1
Sarvetnick, N.2
-
61
-
-
0025293535
-
Prevention of type I diabetes in NOD mice by adjuvant immunotherapy
-
M. W. Sadelain, H. Y. Qin, J. Lauzon, B. Singh, Prevention of type I diabetes in NOD mice by adjuvant immunotherapy. Diabetes 39, 583–589 (1990).
-
(1990)
Diabetes
, vol.39
, pp. 583-589
-
-
Sadelain, M.W.1
Qin, H.Y.2
Lauzon, J.3
Singh, B.4
-
62
-
-
0030219757
-
Changes in B and T lymphocytes associated with mycobacteria-induced protection of NOD mice from diabetes
-
T. C. Martins, A. P. Aguas, Changes in B and T lymphocytes associated with mycobacteria-induced protection of NOD mice from diabetes. J. Autoimmun. 9, 501–507 (1996).
-
(1996)
J. Autoimmun.
, vol.9
, pp. 501-507
-
-
Martins, T.C.1
Aguas, A.P.2
-
63
-
-
0025058568
-
Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein
-
D. Elias, D. Markovits, T. Reshef, R. van der Zee, I. R. Cohen, Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. Natl. Acad. Sci. U.S.A. 87, 1576–1580 (1990).
-
(1990)
Proc. Natl. Acad. Sci. U.S.A.
, vol.87
, pp. 1576-1580
-
-
Elias, D.1
Markovits, D.2
Reshef, T.3
van der Zee, R.4
Cohen, I.R.5
-
64
-
-
0029661838
-
Prevention of diabetes in the nonobese diabetic mouse by oral immunological treatments. Comparative efficiency of human insulin and two bacterial antigens, lipopolysacharide from Escherichia coli and glycoprotein extract from Klebsiella pneumoniae
-
P. Saï, A. S. Rivereau, Prevention of diabetes in the nonobese diabetic mouse by oral immunological treatments. Comparative efficiency of human insulin and two bacterial antigens, lipopolysacharide from Escherichia coli and glycoprotein extract from Klebsiella pneumoniae. Diabetes Metab. 22, 341–348 (1996).
-
(1996)
Diabetes Metab
, vol.22
, pp. 341-348
-
-
Saï, P.1
Rivereau, A.S.2
-
65
-
-
84940930030
-
Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site
-
R. Horai et al., Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343–353 (2015).
-
(2015)
Immunity
, vol.43
, pp. 343-353
-
-
Horai, R.1
-
66
-
-
84960341158
-
Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism
-
T. C. Fung et al., Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity 44, 634–646 (2016).
-
(2016)
Immunity
, vol.44
, pp. 634-646
-
-
Fung, T.C.1
-
67
-
-
84973164846
-
Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity
-
D. K. Cole et al., Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J. Clin. Invest. 126, 3626 (2016).
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 3626
-
-
Cole, D.K.1
-
68
-
-
34347262689
-
Chemically induced mouse models of intestinal inflammation
-
S. Wirtz, C. Neufert, B. Weigmann, M. F. Neurath, Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).
-
(2007)
Nat. Protoc.
, vol.2
, pp. 541-546
-
-
Wirtz, S.1
Neufert, C.2
Weigmann, B.3
Neurath, M.F.4
-
69
-
-
85034442034
-
The microbiota protects against respiratory infection via GM-CSF signaling
-
R. L. Brown, R. P. Sequeira, T. B. Clarke, The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 8, 1512 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 1512
-
-
Brown, R.L.1
Sequeira, R.P.2
Clarke, T.B.3
-
70
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
K. Atarashi et al., Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
-
71
-
-
38449084962
-
Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue
-
B. Weigmann et al., Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc. 2, 2307–2311 (2007).
-
(2007)
Nat. Protoc.
, vol.2
, pp. 2307-2311
-
-
Weigmann, B.1
-
72
-
-
45949095703
-
Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer’s patch, and lamina propria cells
-
Chapter Unit 3
-
L. Lefrancois, N. Lycke, Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer’s patch, and lamina propria cells. Curr. Protoc. Immunol. Chapter 3, Unit 3.19 (2001).
-
(2001)
Curr. Protoc. Immunol.
, vol.3
, pp. 19
-
-
Lefrancois, L.1
Lycke, N.2
-
73
-
-
79959822702
-
Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression
-
S. Ghosh et al., Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G39–G49 (2011).
-
(2011)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.301
, pp. G39-G49
-
-
Ghosh, S.1
|