-
1
-
-
33846950348
-
Challenges in engineering microbes for biofuels production
-
COI: 1:CAS:528:DC%2BD2sXhsVShsrg%3D
-
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007). DOI: 10.1126/science.1139612
-
(2007)
Science
, vol.315
, pp. 801-804
-
-
Stephanopoulos, G.1
-
2
-
-
84886948663
-
Microbial production of short-chain alkanes
-
COI: 1:CAS:528:DC%2BC3sXhsFaksr%2FK
-
Choi, Y. J. & Lee, S. Y. Microbial production of short-chain alkanes. Nature 502, 571–574 (2013). DOI: 10.1038/nature12536
-
(2013)
Nature
, vol.502
, pp. 571-574
-
-
Choi, Y.J.1
Lee, S.Y.2
-
3
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
COI: 1:CAS:528:DC%2BC38Xht1WktL3F
-
Peralta-Yahya, P. P., Zhang, F. Z., del Cardayre, S. B. & Keasling, J. D. Microbial engineering for the production of advanced biofuels. Nature 488, 320–328 (2012). DOI: 10.1038/nature11478
-
(2012)
Nature
, vol.488
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
Zhang, F.Z.2
del Cardayre, S.B.3
Keasling, J.D.4
-
4
-
-
76649111044
-
Advanced biofuel production in microbes
-
COI: 1:CAS:528:DC%2BC3cXitVaqtLc%3D
-
Peralta-Yahya, P. P. & Keasling, J. D. Advanced biofuel production in microbes. Biotechnol. J. 5, 147–162 (2010). DOI: 10.1002/biot.200900220
-
(2010)
Biotechnol. J.
, vol.5
, pp. 147-162
-
-
Peralta-Yahya, P.P.1
Keasling, J.D.2
-
5
-
-
84908529904
-
Metabolic engineering for the production of hydrocarbon fuels
-
COI: 1:CAS:528:DC%2BC2cXhslags7fK
-
Lee, S. Y., Kim, H. M. & Cheon, S. Metabolic engineering for the production of hydrocarbon fuels. Curr. Opin. Biotechnol. 33, 15–22 (2015). DOI: 10.1016/j.copbio.2014.09.008
-
(2015)
Curr. Opin. Biotechnol.
, vol.33
, pp. 15-22
-
-
Lee, S.Y.1
Kim, H.M.2
Cheon, S.3
-
6
-
-
0032946222
-
Biosynthesis and regulation of microbial polyunsaturated fatty acid production
-
COI: 1:CAS:528:DyaK1MXhsl2mtbs%3D
-
Certik, M. & Shimizu, S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87, 1–14 (1999). DOI: 10.1016/S1389-1723(99)80001-2
-
(1999)
J. Biosci. Bioeng.
, vol.87
, pp. 1-14
-
-
Certik, M.1
Shimizu, S.2
-
7
-
-
84897093985
-
Systems metabolic engineering design: fatty acid production as an emerging case study
-
COI: 1:CAS:528:DC%2BC2cXivFahsrY%3D
-
Tee, T. W., Chowdhury, A., Maranas, C. D. & Shanks, J. V. Systems metabolic engineering design: fatty acid production as an emerging case study. Biotechnol. Bioeng. 111, 849–857 (2014). DOI: 10.1002/bit.25205
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 849-857
-
-
Tee, T.W.1
Chowdhury, A.2
Maranas, C.D.3
Shanks, J.V.4
-
8
-
-
57049105699
-
Overproduction of free fatty acids in E. coli: implications for biodiesel production
-
COI: 1:CAS:528:DC%2BD1cXhsVKrt7jO
-
Lu, X., Vora, H. & Khosla, C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab. Eng. 10, 333–339 (2008). DOI: 10.1016/j.ymben.2008.08.006
-
(2008)
Metab. Eng.
, vol.10
, pp. 333-339
-
-
Lu, X.1
Vora, H.2
Khosla, C.3
-
9
-
-
84877804801
-
Modular optimization of multi-gene pathways for fatty acids production in E. coli
-
Xu, P., Gu, Q., Wang, W., Wong, L., Bower, A. G., Collins, C. H. & Koffas, M. A. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4, 1409 (2013). DOI: 10.1038/ncomms2425
-
(2013)
Nat. Commun.
, vol.4
, pp. 1409
-
-
Xu, P.1
Gu, Q.2
Wang, W.3
Wong, L.4
Bower, A.G.5
Collins, C.H.6
Koffas, M.A.7
-
10
-
-
84961393253
-
Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis
-
COI: 1:CAS:528:DC%2BC28XksFCru78%3D
-
Xiao, Y., Bowen, C. H., Liu, D. & Zhang, F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat. Chem. Biol. 12, 339–344 (2016). DOI: 10.1038/nchembio.2046
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 339-344
-
-
Xiao, Y.1
Bowen, C.H.2
Liu, D.3
Zhang, F.4
-
11
-
-
85053517843
-
Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
-
COI: 1:CAS:528:DC%2BC28Xos12rsrw%3D
-
Zhou, Y. J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709 (2016). DOI: 10.1038/ncomms11709
-
(2016)
Nat. Commun.
, vol.7
-
-
Zhou, Y.J.1
-
12
-
-
85053067547
-
Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as Host
-
Ruffing, A. M. Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as Host. Front. Bioeng. Biotechnol. 2, 17 (2016).
-
(2016)
Front. Bioeng. Biotechnol.
, vol.2
, pp. 17
-
-
Ruffing, A.M.1
-
13
-
-
85012009458
-
Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
-
COI: 1:CAS:528:DC%2BC2sXhtVClsr4%3D
-
Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017). DOI: 10.1038/nbt.3763
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 173-177
-
-
Qiao, K.1
Wasylenko, T.M.2
Zhou, K.3
Xu, P.4
Stephanopoulos, G.5
-
14
-
-
84892840633
-
Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
-
Blazeck, J. et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5, 3131 (2014). DOI: 10.1038/ncomms4131
-
(2014)
Nat. Commun.
, vol.5
-
-
Blazeck, J.1
-
15
-
-
84989918349
-
Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
-
Xua, P., Qiaoa, K., Ahna, W. S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl Acad. Sci. USA 113, 10848–10853 (2016). DOI: 10.1073/pnas.1607295113
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 10848-10853
-
-
Xua, P.1
Qiaoa, K.2
Ahna, W.S.3
Stephanopoulos, G.4
-
16
-
-
84974694580
-
Combining metabolic engineering and process optimization to improve production and secretion of fatty acids
-
Amaro, R. L., Dulermo, R., Niehus, X. & Nicaud, J. M. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab. Eng. 38, 38–46 (2016). DOI: 10.1016/j.ymben.2016.06.004
-
(2016)
Metab. Eng.
, vol.38
, pp. 38-46
-
-
Amaro, R.L.1
Dulermo, R.2
Niehus, X.3
Nicaud, J.M.4
-
17
-
-
78149417794
-
High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production
-
COI: 1:CAS:528:DC%2BC3cXntVemu7c%3D
-
Kurosawa, K., Boccazzi, P., de Almeida, N. M. & Sinskey, A. J. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J. Biotechnol. 147, 212–218 (2010). DOI: 10.1016/j.jbiotec.2010.04.003
-
(2010)
J. Biotechnol.
, vol.147
, pp. 212-218
-
-
Kurosawa, K.1
Boccazzi, P.2
de Almeida, N.M.3
Sinskey, A.J.4
-
18
-
-
0033839931
-
Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126
-
COI: 1:CAS:528:DC%2BD3cXmtFyitbc%3D
-
Alvarez, H. M., Kalscheuer, R. & Steinbüchel, A. Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl. Microbiol. Biotechnol. 54, 218–223 (2000). DOI: 10.1007/s002530000395
-
(2000)
Appl. Microbiol. Biotechnol.
, vol.54
, pp. 218-223
-
-
Alvarez, H.M.1
Kalscheuer, R.2
Steinbüchel, A.3
-
19
-
-
0036889029
-
Gene expression profiling of the pH response in Escherichia coli
-
Tucker, D. L., Tucker, N. & Conway, T. Gene expression profiling of the pH response in Escherichia coli. J. Bacteriol. 23, 6551–6558 (2002). DOI: 10.1128/JB.184.23.6551-6558.2002
-
(2002)
J. Bacteriol.
, vol.23
, pp. 6551-6558
-
-
Tucker, D.L.1
Tucker, N.2
Conway, T.3
-
20
-
-
84902677266
-
Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics
-
Alvarez, H. M., Silva, R. A., Herrero, M., Hernández, M. A. & Villalba, M. S. Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J. Mol. Biochem. 2, 69–78 (2012).
-
(2012)
J. Mol. Biochem.
, vol.2
, pp. 69-78
-
-
Alvarez, H.M.1
Silva, R.A.2
Herrero, M.3
Hernández, M.A.4
Villalba, M.S.5
-
21
-
-
3142773489
-
Bacterial lipases: an overview of production, purification and biochemical properties
-
COI: 1:CAS:528:DC%2BD2cXktlyku7Y%3D
-
Gupta, R., Gupta, N. & Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–781 (2004). DOI: 10.1007/s00253-004-1568-8
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.64
, pp. 763-781
-
-
Gupta, R.1
Gupta, N.2
Rathi, P.3
-
22
-
-
0030806372
-
Regulation of the inducible acetamidase gene of Mycobacterium smegmatis
-
COI: 1:CAS:528:DyaK2sXkvFGqu7s%3D
-
Parish, T., Mahenthiralingam, E., Draper, P., Davis, E. O. & Colston, M. J. Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276 (1997). DOI: 10.1099/00221287-143-7-2267
-
(1997)
Microbiology
, vol.143
, pp. 2267-2276
-
-
Parish, T.1
Mahenthiralingam, E.2
Draper, P.3
Davis, E.O.4
Colston, M.J.5
-
23
-
-
84893274031
-
Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630
-
COI: 1:CAS:528:DC%2BC2cXhtlShsrc%3D
-
Chen, Y. et al. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res. 42, 1052–1064 (2014). DOI: 10.1093/nar/gkt932
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 1052-1064
-
-
Chen, Y.1
-
24
-
-
84892950934
-
Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs
-
Kranen, E., Detzel, C., Weber, T. & Jose, J. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Microb. Cell. Fact. 13, 19 (2014). DOI: 10.1186/1475-2859-13-19
-
(2014)
Microb. Cell. Fact.
, vol.13
, pp. 19
-
-
Kranen, E.1
Detzel, C.2
Weber, T.3
Jose, J.4
-
25
-
-
75749125061
-
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
-
COI: 1:CAS:528:DC%2BC3cXht1Slu70%3D
-
Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010). DOI: 10.1038/nature08721
-
(2010)
Nature
, vol.463
, pp. 559-562
-
-
Steen, E.J.1
-
26
-
-
0033768654
-
Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid
-
COI: 1:CAS:528:DC%2BD3cXns1emsLg%3D
-
Holland-Staley, C. A., Lee, K., Clark, D. P. & Cunningham, P. R. Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. J. Bacteriol. 182, 6049–6054 (2000). DOI: 10.1128/JB.182.21.6049-6054.2000
-
(2000)
J. Bacteriol.
, vol.182
, pp. 6049-6054
-
-
Holland-Staley, C.A.1
Lee, K.2
Clark, D.P.3
Cunningham, P.R.4
-
27
-
-
84866174695
-
Differences in substrate specificities of five bacterial wax ester synthases
-
COI: 1:CAS:528:DC%2BC38XhtFOnsrrL
-
Barney, B. M., Wahlen, B. D., Garner, E., Wei, J. S. & Seefeldt, L. C. Differences in substrate specificities of five bacterial wax ester synthases. Appl. Environ. Microb. 78, 5734–5745 (2012). DOI: 10.1128/AEM.00534-12
-
(2012)
Appl. Environ. Microb.
, vol.78
, pp. 5734-5745
-
-
Barney, B.M.1
Wahlen, B.D.2
Garner, E.3
Wei, J.S.4
Seefeldt, L.C.5
-
28
-
-
14544268951
-
The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase
-
Stöveken, T., Kalscheuer, R., Malkus, U., Reichelt, R. & Steinbüchel, A. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J. Bacteriol. 187, 1369–1376 (2005). DOI: 10.1128/JB.187.4.1369-1376.2005
-
(2005)
J. Bacteriol.
, vol.187
, pp. 1369-1376
-
-
Stöveken, T.1
Kalscheuer, R.2
Malkus, U.3
Reichelt, R.4
Steinbüchel, A.5
-
29
-
-
77952611328
-
Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes
-
Na, D., Lee, S. & Lee, D. Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst. Biol. 4, 71 (2010). DOI: 10.1186/1752-0509-4-71
-
(2010)
BMC Syst. Biol.
, vol.4
-
-
Na, D.1
Lee, S.2
Lee, D.3
-
30
-
-
77955118014
-
Microbial biosynthesis of alkanes
-
COI: 1:CAS:528:DC%2BC3cXptlCltLc%3D
-
Schirmer, A., Rude, M. A., Li, X. Z., Popova, E. & del Cardayre, S. B. Microbial biosynthesis of alkanes. Science 329, 559–562 (2010). DOI: 10.1126/science.1187936
-
(2010)
Science
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
Rude, M.A.2
Li, X.Z.3
Popova, E.4
del Cardayre, S.B.5
-
31
-
-
84874864639
-
Expanding the product profile of a microbial alkane biosynthetic pathway
-
COI: 1:CAS:528:DC%2BC38XhtlaksrzJ
-
Harger, M. et al. Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth. Biol. 2, 59–62 (2013). DOI: 10.1021/sb300061x
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 59-62
-
-
Harger, M.1
-
32
-
-
84890934527
-
Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli
-
Lui, R. et al. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab. Eng. 22, 10–21 (2014). DOI: 10.1016/j.ymben.2013.12.004
-
(2014)
Metab. Eng.
, vol.22
, pp. 10-21
-
-
Lui, R.1
-
33
-
-
80053454256
-
Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development
-
Holder, J. W. et al. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet. 7, 9 (2011). DOI: 10.1371/journal.pgen.1002219
-
(2011)
PLoS Genet.
, vol.7
, pp. 9
-
-
Holder, J.W.1
-
34
-
-
34447317247
-
Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets
-
Jamshidi, N. & Palsson, B. Ø. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst. Biol. 1, 26 (2007). DOI: 10.1186/1752-0509-1-26
-
(2007)
BMC Syst. Biol.
, vol.1
-
-
Jamshidi, N.1
Palsson, B.Ø.2
-
35
-
-
84943604629
-
Systems strategies for developing industrial microbial strains
-
COI: 1:CAS:528:DC%2BC2MXhvFKksLjJ
-
Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061–1072 (2015). DOI: 10.1038/nbt.3365
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1061-1072
-
-
Lee, S.Y.1
Kim, H.U.2
-
36
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
COI: 1:CAS:528:DC%2BD1MXksVemsbw%3D
-
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009). DOI: 10.1038/nmeth.1318
-
(2009)
Nat. Methods
, vol.6
, pp. 343-345
-
-
Gibson, D.G.1
-
37
-
-
33750932729
-
The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins
-
Hänisch, J., Wältermann, M., Robenek, H. & Steinbüchel, A. The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Microbiology 152, 3271–3280 (2006). DOI: 10.1099/mic.0.28969-0
-
(2006)
Microbiology
, vol.152
, pp. 3271-3280
-
-
Hänisch, J.1
Wältermann, M.2
Robenek, H.3
Steinbüchel, A.4
-
38
-
-
84907362164
-
Metabolic engineering of Corynebacterium glutamicum for l-arginine production
-
COI: 1:CAS:528:DC%2BC2cXitVWgs7fL
-
Park, S. H. et al. Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat. Commun. 5, 4618 (2014). DOI: 10.1038/ncomms5618
-
(2014)
Nat. Commun.
, vol.5
-
-
Park, S.H.1
-
39
-
-
0032741007
-
Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids)
-
COI: 1:CAS:528:DyaK1MXnt1Kitr4%3D
-
Kalscheuer, R., Arenskotter, M. & Steinbüchel, A. Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids). Appl. Microbiol. Biotechnol. 52, 508–515 (1999). DOI: 10.1007/s002530051553
-
(1999)
Appl. Microbiol. Biotechnol.
, vol.52
, pp. 508-515
-
-
Kalscheuer, R.1
Arenskotter, M.2
Steinbüchel, A.3
-
40
-
-
0034064965
-
Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids
-
COI: 1:CAS:528:DC%2BD3cXjsFertrk%3D
-
Waltermann, M., Luftmann, H., Baumeister, D., Kalscheuer, R. & Steinbüchel, A. Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology 146, 1143–1149 (2000). DOI: 10.1099/00221287-146-5-1143
-
(2000)
Microbiology
, vol.146
, pp. 1143-1149
-
-
Waltermann, M.1
Luftmann, H.2
Baumeister, D.3
Kalscheuer, R.4
Steinbüchel, A.5
-
41
-
-
84863229520
-
Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei
-
COI: 1:CAS:528:DC%2BC38Xjs1agu70%3D
-
Cai, S. F. et al. Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei. Appl. Environ. Microb. 78, 1946–1952 (2012). DOI: 10.1128/AEM.07114-11
-
(2012)
Appl. Environ. Microb.
, vol.78
, pp. 1946-1952
-
-
Cai, S.F.1
-
42
-
-
18944368050
-
Analysis of transient polyhydroxybutyrate production in Wautersia eutropha H16 by quantitative Western analysis and transmission electron microscopy
-
COI: 1:CAS:528:DC%2BD2MXks12ntbo%3D
-
Tian, J. M. et al. Analysis of transient polyhydroxybutyrate production in Wautersia eutropha H16 by quantitative Western analysis and transmission electron microscopy. J. Bacteriol. 187, 3825–3832 (2005). DOI: 10.1128/JB.187.11.3825-3832.2005
-
(2005)
J. Bacteriol.
, vol.187
, pp. 3825-3832
-
-
Tian, J.M.1
-
43
-
-
84979859096
-
antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters
-
Weber, T. et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, 237–243 (2015). DOI: 10.1093/nar/gkv437
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 237-243
-
-
Weber, T.1
-
44
-
-
84870431146
-
EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes
-
COI: 1:CAS:528:DC%2BC38XhsFWksbnK
-
Kumar, N. & Skolnick, J. EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes. Bioinformatics 28, 2687–2688 (2012). DOI: 10.1093/bioinformatics/bts510
-
(2012)
Bioinformatics
, vol.28
, pp. 2687-2688
-
-
Kumar, N.1
Skolnick, J.2
-
45
-
-
84960537037
-
BiGG Models: a platform for integrating, standardizing and sharing genome-scale models
-
King, Z. A. et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 4, 515–525 (2015).
-
(2015)
Nucleic Acids Res.
, vol.4
, pp. 515-525
-
-
King, Z.A.1
|