-
1
-
-
85068450713
-
-
Available online, (accessed on 5 December 2017)
-
WHO. WHO|Obesity and Overweight. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 5 December 2017).
-
WHO
-
-
-
2
-
-
84863615980
-
Energy Balance and Obesity
-
Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy Balance and Obesity. Circulation 2012, 126, 126–132.
-
(2012)
Circulation
, vol.126
, pp. 126-132
-
-
Hill, J.O.1
Wyatt, H.R.2
Peters, J.C.3
-
3
-
-
14544275997
-
Origins and evolution of the Western diet: Health implications for the 21st century
-
Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354.
-
(2005)
Am. J. Clin. Nutr.
, vol.81
, pp. 341-354
-
-
Cordain, L.1
Eaton, S.B.2
Sebastian, A.3
Mann, N.4
Lindeberg, S.5
Watkins, B.A.6
O’Keefe, J.H.7
Brand-Miller, J.8
-
4
-
-
84855415465
-
NOW AND THEN: The Global Nutrition Transition: The Pandemic of
-
Popkin, B.M.; Adair, L.S.; Ng, S.W. NOW AND THEN: The Global Nutrition Transition: The Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21.
-
(2012)
Nutr. Rev.
, vol.70
, pp. 3-21
-
-
Popkin, B.M.1
Adair, L.S.2
Ng, S.W.3
-
5
-
-
85012966798
-
Natural Experiment: Using Immersive Technologiesto Study the Impact of ‘All-Natural’ Labeling on Perceived Food Quality, Nutritional Content, and Liking
-
Liu, R.; Hooker, N.H.; Parasidis, E.; Simons, C.T. A Natural Experiment: Using Immersive Technologies to Study the Impact of ‘All-Natural’ Labeling on Perceived Food Quality, Nutritional Content, and Liking. J. Food Sci. 2017, 82, 825–833.
-
(2017)
J. Food Sci.
, vol.82
, pp. 825-833
-
-
Liu, R.1
Hooker, N.H.2
Parasidis, E.3
Simons, C.4
-
6
-
-
85058161748
-
What Is ‘Natural’? Consumer Responses to Selected Ingredients
-
Chambers, E.; Chambers, E.; Castro, M. What Is ‘Natural’? Consumer Responses to Selected Ingredients. Foods 2018, 7, 65.
-
(2018)
Foods
, vol.7
, pp. 65
-
-
Chambers, E.1
Chambers, E.2
Castro, M.3
-
7
-
-
84856221678
-
Stevia rebaudiana Bertoni, source of ahigh-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functionalaspects
-
Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132.
-
(2012)
Food Chem
, vol.132
, pp. 1121-1132
-
-
Lemus-Mondaca, R.1
Vega-Gálvez, A.2
Zura-Bravo, L.3
Ah-Hen, K.4
-
8
-
-
85068472155
-
-
Available online:, (accessed on 11 March 2016)
-
Nutrition C for FS and A. Food Additives & Ingredients—Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. Available online: http://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm397725.htm (accessed on 11 March 2016).
-
Food Additives &Amp; Ingredients—Additional Information about High-Intensity
-
-
-
9
-
-
84886573436
-
Stevia, ka’a he’e, wild sweet herb from South America—An overview
-
Giuffre, L.; Romaniuk, R.; Ciarlo, E. Stevia, ka’a he’e, wild sweet herb from South America—An overview. Emir. J. Food Agric. 2013, 25, 746–750.
-
(2013)
Emir. J. Food Agric.
, vol.25
, pp. 746-750
-
-
Giuffre, L.1
Romaniuk, R.2
Ciarlo, E.3
-
10
-
-
0347316397
-
Antihyperglycemic effects of stevioside in type 2diabetic subjects
-
Gregersen, S.; Jeppesen, P.B.; Holst, J.J.; Hermansen, K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metab. Clin. Exp. 2004, 53, 73–76.
-
(2004)
Metab. Clin. Exp.
, vol.53
, pp. 73-76
-
-
Gregersen, S.1
Jeppesen, P.B.2
Holst, J.J.3
Hermansen, K.4
-
11
-
-
14944361919
-
Mechanism of the hypoglycemic effect ofstevioside, a glycoside of Stevia rebaudiana
-
Chen, T.H.; Chen, S.C.; Chan, P.; Chu, Y.L.; Yang, H.Y.; Cheng, J.T. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med. 2005, 71, 108–113.
-
(2005)
Planta Med
, vol.71
, pp. 108-113
-
-
Chen, T.H.1
Chen, S.C.2
Chan, P.3
Chu, Y.L.4
Yang, H.Y.5
Cheng, J.T.6
-
13
-
-
85048333817
-
Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves inStreptozotocin-induced diabetes in albino rats
-
Ahmad, U.; Ahmad, R.S. Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats. BMC Complement. Altern. Med. 2018, 18, 179.
-
(2018)
BMC Complement. Altern. Med.
, vol.18
, pp. 179
-
-
Ahmad, U.1
Ahmad, R.S.2
-
14
-
-
85068437441
-
-
aem, Available online, (accessed on 2 January 2019)
-
Health Canada. Consultation on Health Canada’s Proposal to Allow the Use of the Food Additive Steviol Glycosides as a Table-Top Sweetener and as a Sweetener in Certain Food Categories. aem. 2012. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/public-involvement-partnerships/technical-consultation-proposal-allow-use-food-additive-steviol-glycosides-table-top-sweetener/consultation.html (accessed on 2 January 2019).
-
(2012)
Health Canada. Consultation on Health Canada’s Proposal to Allow the Use of the Food Additive
-
-
-
15
-
-
84868696777
-
Saccharin and aspartame, compared with sucrose, induce greater weight gain in adult Wistar rats, at similartotal caloric intake levels
-
Feijó, F.d.M.; Ballard, C.R.; Foletto, K.C.; Batista, B.A.M.; Neves, A.M.; Ribeiro, M.F.M.; Bertoluci, M.C. Saccharin and aspartame, compared with sucrose, induce greater weight gain in adult Wistar rats, at similar total caloric intake levels. Appetite 2013, 60, 203–207.
-
(2013)
Appetite
, vol.60
, pp. 203-207
-
-
Feijó, F.D.M.1
Ballard, C.R.2
Foletto, K.C.3
Batista, B.A.M.4
Neves, A.M.5
Ribeiro, M.F.M.6
Bertoluci, M.C.7
-
16
-
-
84907999777
-
Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in theDiet-Induced Obese Rat
-
Palmnäs, M.S.A.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat. PLoS ONE 2014, 9, e109841.
-
(2014)
Plos ONE
, vol.9
-
-
Palmnäs, M.S.A.1
Cowan, T.E.2
Bomhof, M.R.3
Su, J.4
Reimer, R.A.5
Vogel, H.J.6
Hittel, D.S.7
Shearer, J.8
-
17
-
-
84908325271
-
Artificial sweeteners induce glucose intolerance by altering the gut microbiota
-
Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A., et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186.
-
(2014)
Nature
, vol.514
, pp. 181-186
-
-
Suez, J.1
Korem, T.2
Zeevi, D.3
Zilberman-Schapira, G.4
Thaiss, C.A.5
Maza, O.6
Israeli, D.7
Zmora, N.8
Gilad, S.9
Weinberger, A.10
-
18
-
-
33845874101
-
An obesity-associated gutmicrobiome with increased capacity for energy harvest
-
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031.
-
(2006)
Nature
, vol.444
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
Magrini, V.4
Mardis, E.R.5
Gordon, J.I.6
-
19
-
-
85049507771
-
Non-nutritive sweeteners possess a bacteriostatic effectand alter gut microbiota in mice
-
Wang, Q.-P.; Browman, D.; Herzog, H.; Neely, G.G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS ONE 2018, 13, e0199080.
-
(2018)
Plos ONE
, vol.13
-
-
Wang, Q.-P.1
Browman, D.2
Herzog, H.3
Neely, G.G.4
-
20
-
-
84997706149
-
Biological fate of low-caloriesweeteners
-
Magnuson, B.A.; Carakostas, M.C.; Moore, N.H.; Poulos, S.P.; Renwick, A.G. Biological fate of low-calorie sweeteners. Nutr. Rev. 2016, 74, 670–689.
-
(2016)
Nutr. Rev.
, vol.74
, pp. 670-689
-
-
Magnuson, B.A.1
Carakostas, M.C.2
Moore, N.H.3
Poulos, S.P.4
Renwick, A.G.5
-
21
-
-
85027283029
-
Expert consensus document: The International Scientific Association forProbiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics
-
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502.
-
(2017)
Nat. Rev.Gastroenterol. Hepatol.
, vol.14
, pp. 491-502
-
-
Gibson, G.R.1
Hutkins, R.2
Sanders, M.E.3
Prescott, S.L.4
Reimer, R.A.5
Salminen, S.J.6
Scott, K.7
Stanton, C.8
Swanson, K.S.9
Cani, P.D.10
-
22
-
-
85064117674
-
Maternalprebiotic supplementation reduces fatty liver development in offspring through altered microbial andmetabolomic profiles in rats
-
Paul, H.A.; Collins, K.H.; Nicolucci, A.C.; Urbanski, S.J.; Hart, D.A.; Vogel, H.J.; Reimer, R.A. Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats. FASEB J. 2019, 33, 5153–5167.
-
(2019)
FASEB J
, vol.33
, pp. 5153-5167
-
-
Paul, H.A.1
Collins, K.H.2
Nicolucci, A.C.3
Urbanski, S.J.4
Hart, D.A.5
Vogel, H.J.6
Reimer, R.A.7
-
23
-
-
84873805162
-
Gut microbiota and metabolic disorders: How prebiotic can
-
Delzenne, N.M.; Neyrinck, A.M.; Cani, P.D. Gut microbiota and metabolic disorders: How prebiotic can work? Br. J. Nutr. 2013, 109 (Suppl. 2), S81–S85.
-
(2013)
Br. J. Nutr.
, vol.109
, pp. S81-S85
-
-
Delzenne, N.M.1
Neyrinck, A.M.2
Cani, P.D.3
-
24
-
-
85068475043
-
-
16S-metagenomic-library-prep-guide-15044223-b.pdfAvailable online, (accessed on 15 April 2019)
-
16S-metagenomic-library-prep-guide-15044223-b.pdf. Available online: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 15 April 2019).
-
-
-
-
25
-
-
84969871954
-
DADA2: High-resolutionsample inference from Illumina amplicon data
-
Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583.
-
(2016)
Nat. Methods
, vol.13
, pp. 581-583
-
-
Callahan, B.J.1
McMurdie, P.J.2
Rosen, M.J.3
Han, A.W.4
Johnson, A.J.A.5
Holmes, S.P.6
-
26
-
-
84876427223
-
Phyloseq: An R package for reproducible interactive analysis and graphics ofmicrobiome census data
-
McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217.
-
(2013)
Plos ONE
, vol.8
, pp. e61217
-
-
McMurdie, P.J.1
Holmes, S.2
-
27
-
-
79959383523
-
Metagenomicbiomarker discovery and explanation
-
Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60.
-
(2011)
Genome Biol
, vol.12
, pp. R60
-
-
Segata, N.1
Izard, J.2
Waldron, L.3
Gevers, D.4
Miropolsky, L.5
Garrett, W.S.6
Huttenhower, C.7
-
28
-
-
0023271911
-
High-performance liquid chromatographic analysis of serum short-chain fattyacids by direct derivatization
-
Miwa, H.; Yamamoto, M. High-performance liquid chromatographic analysis of serum short-chain fatty acids by direct derivatization. J. Chromatogr. 1987, 421, 33–41.
-
(1987)
J. Chromatogr.
, vol.421
, pp. 33-41
-
-
Miwa, H.1
Yamamoto, M.2
-
29
-
-
1242269217
-
Dopamine operates as asubsecond modulator of food seeking
-
Roitman, M.F.; Stuber, G.D.; Phillips, P.E.M.; Wightman, R.M.; Carelli, R.M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 2004, 24, 1265–1271.
-
(2004)
J. Neurosci.
, vol.24
, pp. 1265-1271
-
-
Roitman, M.F.1
Stuber, G.D.2
Phillips, P.E.M.3
Wightman, R.M.4
Carelli, R.M.5
-
30
-
-
77953962912
-
Effects of stevia,aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels
-
Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 2010, 55, 37–43.
-
(2010)
Appetite
, vol.55
, pp. 37-43
-
-
Anton, S.D.1
Martin, C.K.2
Han, H.3
Coulon, S.4
Cefalu, W.T.5
Geiselman, P.6
Williamson, D.A.7
-
31
-
-
84890112332
-
Steviolglycosides modulate glucose transport in different cell types
-
Rizzo, B.; Zambonin, L.; Angeloni, C.; Leoncini, E.; Dalla Sega, F.V.; Prata, C.; Fiorentini, D.; Hrelia, S. Steviol glycosides modulate glucose transport in different cell types. Oxid. Med. Cell. Longev. 2013, 2013, 348169.
-
(2013)
Oxid. Med. Cell. Longev
, vol.2013
-
-
Rizzo, B.1
Zambonin, L.2
Angeloni, C.3
Leoncini, E.4
Dalla Sega, F.V.5
Prata, C.6
Fiorentini, D.7
Hrelia, S.8
-
32
-
-
0033952852
-
Stevioside acts directly on pancreaticbeta cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosinetriphosphate-sensitive K+-channel activity
-
Jeppesen, P.B.; Gregersen, S.; Poulsen, C.R.; Hermansen, K. Stevioside acts directly on pancreatic beta cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metab. Clin. Exp. 2000, 49, 208–214.
-
(2000)
Metab. Clin. Exp.
, vol.49
, pp. 208-214
-
-
Jeppesen, P.B.1
Gregersen, S.2
Poulsen, C.R.3
Hermansen, K.4
-
33
-
-
0036190439
-
Stevioside induces antihyperglycaemic
-
Jeppesen, P.B.; Gregersen, S.; Alstrup, K.K.; Hermansen, K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: Studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 2002, 9, 9–14.
-
(2002)
Phytomedicine
, vol.9
, pp. 9-14
-
-
Jeppesen, P.B.1
Gregersen, S.2
Alstrup, K.K.3
Hermansen, K.4
-
35
-
-
38049112349
-
Physiological effectsof dietary fructans extracted from Agave tequilana Gto. And Dasylirion spp
-
Urías-Silvas, J.E.; Cani, P.D.; Delmée, E.; Neyrinck, A.; López, M.G.; Delzenne, N.M. Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br. J. Nutr. 2008, 99, 254–261.
-
(2008)
Br. J. Nutr.
, vol.99
, pp. 254-261
-
-
Urías-Silvas, J.E.1
Cani, P.D.2
Delmée, E.3
Neyrinck, A.4
López, M.G.5
Delzenne, N.M.6
-
36
-
-
84891925821
-
Propionic and butyric acids, formed in the caecum of ratsfed highly fermentable dietary fibre, are reflected in portal and aortic serum
-
Jakobsdottir, G.; Jädert, C.; Holm, L.; Nyman, M.E. Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum. Br. J. Nutr. 2013, 110, 1565–1572.
-
(2013)
Br. J. Nutr.
, vol.110
, pp. 1565-1572
-
-
Jakobsdottir, G.1
Jädert, C.2
Holm, L.3
Nyman, M.E.4
-
37
-
-
84859439842
-
The potential role of prebiotic fibre for treatment andmanagement of non-alcoholic fatty liver disease and associated obesity and insulin resistance
-
Parnell, J.A.; Raman, M.; Rioux, K.P.; Reimer, R.A. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012, 32, 701–711.
-
(2012)
Liver Int
, vol.32
, pp. 701-711
-
-
Parnell, J.A.1
Raman, M.2
Rioux, K.P.3
Reimer, R.A.4
-
38
-
-
70449536475
-
The bifidogenic effect of inulin and oligofructose and its consequences for guthealth
-
Meyer, D.; Stasse-Wolthuis, M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur. J. Clin. Nutr. 2009, 63, 1277–1289.
-
(2009)
Eur. J. Clin. Nutr.
, vol.63
, pp. 1277-1289
-
-
Meyer, D.1
Stasse-Wolthuis, M.2
-
39
-
-
65249099918
-
Changes in gut microbiota control inflammation in obese mice through amechanism involving GLP-2-driven improvement of gut permeability
-
Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M., et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009, 58, 1091–1103.
-
(2009)
Gut
, vol.58
, pp. 1091-1103
-
-
Cani, P.D.1
Possemiers, S.2
Van De Wiele, T.3
Guiot, Y.4
Everard, A.5
Rottier, O.6
Geurts, L.7
Naslain, D.8
Neyrinck, A.9
Lambert, D.M.10
-
40
-
-
34347215242
-
Homeostatic and Non-homeostatic Pathways Involved in the Control of Food Intake andEnergy Balance
-
Berthoud, H.-R. Homeostatic and Non-homeostatic Pathways Involved in the Control of Food Intake and Energy Balance. Obesity 2006, 14, 197S–200S.
-
(2006)
Obesity
, vol.14
, pp. 197S-200S
-
-
Berthoud, H.-R.1
-
41
-
-
33748541108
-
LeptinRegulation of the Mesoaccumbens Dopamine Pathway
-
Fulton, S.; Pissios, P.; Manchon, R.P.; Stiles, L.; Frank, L.; Pothos, E.N.; Maratos-Flier, E.; Flier, J.S. Leptin Regulation of the Mesoaccumbens Dopamine Pathway. Neuron 2006, 51, 811–822.
-
(2006)
Neuron
, vol.51
, pp. 811-822
-
-
Fulton, S.1
Pissios, P.2
Manchon, R.P.3
Stiles, L.4
Frank, L.5
Pothos, E.N.6
Maratos-Flier, E.7
Flier, J.S.8
-
42
-
-
85009423453
-
Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity
-
Friend, D.M.; Devarakonda, K.; O’Neal, T.J.; Skirzewski, M.; Papazoglou, I.; Kaplan, A.R.; Liow, J.S.; Guo, J.; Rane, S.G.; Rubinstein, M., et al. Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity. Cell Metab. 2017, 25, 312–321.
-
(2017)
Cell Metab
, vol.25
, pp. 312-321
-
-
Friend, D.M.1
Devarakonda, K.2
O’Neal, T.J.3
Skirzewski, M.4
Papazoglou, I.5
Kaplan, A.R.6
Liow, J.S.7
Guo, J.8
Rane, S.G.9
Rubinstein, M.10
-
43
-
-
84883766007
-
Mechanisms of dopamine transporter regulation in normal and disease states
-
Vaughan, R.A.; Foster, J.D. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol. Sci. 2013, 34, 489–496.
-
(2013)
Trends Pharmacol. Sci.
, vol.34
, pp. 489-496
-
-
Vaughan, R.A.1
Foster, J.D.2
-
44
-
-
85011317576
-
Effects of diet and insulin on dopaminetransporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain
-
Jones, K.T.; Woods, C.; Zhen, J.; Antonio, T.; Carr, K.; Reith, M.E.A. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J. Neurochem. 2017, 140, 728–740.
-
(2017)
J. Neurochem.
, vol.140
, pp. 728-740
-
-
Jones, K.T.1
Woods, C.2
Zhen, J.3
Antonio, T.4
Carr, K.5
Reith, M.E.A.6
-
45
-
-
85013649361
-
High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed byRestoring Insulin Signaling
-
Fordahl, S.C.; Jones, S.R. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling. ACS Chem. Neurosci. 2017, 8, 290–299.
-
(2017)
ACS Chem. Neurosci.
, vol.8
, pp. 290-299
-
-
Fordahl, S.C.1
Jones, S.R.2
-
46
-
-
84881119582
-
Diet-induced obesity: Dopaminetransporter function, impulsivity and motivation
-
Narayanaswami, V.; Thompson, A.; Cassis, L.; Bardo, M.; Dwoskin, L. Diet-induced obesity: Dopamine transporter function, impulsivity and motivation. Int. J. Obes. (Lond.) 2013, 37, 1095–1103.
-
(2013)
Int. J. Obes. (Lond.)
, vol.37
, pp. 1095-1103
-
-
Narayanaswami, V.1
Thompson, A.2
Cassis, L.3
Bardo, M.4
Dwoskin, L.5
-
47
-
-
85018414391
-
Beneficial effectson host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probioticbacteria
-
LeBlanc, J.G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 2017, 16, 79.
-
(2017)
Microb. Cell Fact.
, vol.16
, pp. 79
-
-
Leblanc, J.G.1
Chain, F.2
Martín, R.3
Bermúdez-Humarán, L.G.4
Courau, S.5
Langella, P.6
-
48
-
-
78049504118
-
Examination of faecal Bifidobacteriumpopulations in breast- and formula-fed infants during the first 18 months of life
-
Roger, L.C.; Costabile, A.; Holland, D.T.; Hoyles, L.; McCartney, A.L. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 2010, 156, 3329–3341.
-
(2010)
Microbiology
, vol.156
, pp. 3329-3341
-
-
Roger, L.C.1
Costabile, A.2
Holland, D.T.3
Hoyles, L.4
McCartney, A.L.5
-
49
-
-
40549088230
-
Early differences in fecal microbiota composition inchildren may predict overweight
-
Kalliomäki, M.; Collado, M.C.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008, 87, 534–538.
-
(2008)
Am. J. Clin. Nutr.
, vol.87
, pp. 534-538
-
-
Kalliomäki, M.1
Collado, M.C.2
Salminen, S.3
Isolauri, E.4
-
50
-
-
84980027594
-
Bifidobacteria and Their Role as Members of the Human Gut Microbiota
-
O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925.
-
(2016)
Front. Microbiol.
, vol.7
, pp. 925
-
-
O’Callaghan, A.1
Van Sinderen, D.2
-
51
-
-
0037180433
-
Developmental regulation of intestinal angiogenesis byindigenous microbes via Paneth cells
-
Stappenbeck, T.S.; Hooper, L.V.; Gordon, J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 2002, 99, 15451–15455.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 15451-15455
-
-
Stappenbeck, T.S.1
Hooper, L.V.2
Gordon, J.I.3
-
52
-
-
84930675333
-
Changesin Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters
-
Lecomte, V.; Kaakoush, N.O.; Maloney, C.A.; Raipuria, M.; Huinao, K.D.; Mitchell, H.M.; Morris, M.J. Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters. PLoS ONE 2015, 10, e0126931.
-
(2015)
Plos ONE
, vol.10
-
-
Lecomte, V.1
Kaakoush, N.O.2
Maloney, C.A.3
Raipuria, M.4
Huinao, K.D.5
Mitchell, H.M.6
Morris, M.J.7
-
53
-
-
84878465280
-
Cross-talk between Akkermansia muciniphila and intestinal epitheliumcontrols diet-induced obesity
-
Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 9066-9071
-
-
Everard, A.1
Belzer, C.2
Geurts, L.3
Ouwerkerk, J.P.4
Druart, C.5
Bindels, L.B.6
Guiot, Y.7
Derrien, M.8
Muccioli, G.G.9
Delzenne, N.M.10
-
54
-
-
84947648620
-
Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cellgrowth under metabolic stress
-
Schug, Z.T.; Peck, B.; Jones, D.T.; Zhang, Q.; Grosskurth, S.; Alam, I.S.; Goodwin, L.M.; Smethurst, E.; Mason, S.; Blyth, K., et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 2015, 27, 57–71.
-
(2015)
Cancer Cell
, vol.27
, pp. 57-71
-
-
Schug, Z.T.1
Peck, B.2
Jones, D.T.3
Zhang, Q.4
Grosskurth, S.5
Alam, I.S.6
Goodwin, L.M.7
Smethurst, E.8
Mason, S.9
Blyth, K.10
-
55
-
-
4143111917
-
Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages
-
5th ed.; Published Online First, Available online, (accessed on 18 April 2019)
-
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages. In Biochemistry, 5th ed.; Published Online First; 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22350/ (accessed on 18 April 2019).
-
(2002)
Biochemistry
-
-
Berg, J.M.1
Tymoczko, J.L.2
Stryer, L.3
-
56
-
-
33748209543
-
Colonic health: Fermentation andshort chain fatty acids
-
Wong, J.M.W.; de Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243.
-
(2006)
J. Clin. Gastroenterol.
, vol.40
, pp. 235-243
-
-
Wong, J.M.W.1
De Souza, R.2
Kendall, C.W.C.3
Emam, A.4
Jenkins, D.J.A.5
-
57
-
-
27844440904
-
Acetate and Propionate Short Chain Fatty Acids Stimulate Adipogenesis viaGPCR43
-
Hong, Y.H.; Nishimura, Y.; Hishikawa, D.; Tsuzuki, H.; Miyahara, H.; Gotoh, C.; Choi, K.C.; Feng, D.D.; Chen, C.; Lee, H.G., et al. Acetate and Propionate Short Chain Fatty Acids Stimulate Adipogenesis via GPCR43. Endocrinology 2005, 146, 5092–5099.
-
(2005)
Endocrinology
, vol.146
, pp. 5092-5099
-
-
Hong, Y.H.1
Nishimura, Y.2
Hishikawa, D.3
Tsuzuki, H.4
Miyahara, H.5
Gotoh, C.6
Choi, K.C.7
Feng, D.D.8
Chen, C.9
Lee, H.G.10
-
58
-
-
84903711427
-
Adiposity, gut microbiota andfaecal short chain fatty acids are linked in adult humans
-
Fernandes, J.; Su, W.; Rahat-Rozenbloom, S.; Wolever, T.M.S.; Comelli, E.M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 2014, 4, e121.
-
(2014)
Nutr. Diabetes
, vol.4
, pp. e121
-
-
Fernandes, J.1
Su, W.2
Rahat-Rozenbloom, S.3
Wolever, T.M.S.4
Comelli, E.M.5
-
59
-
-
73949137604
-
Microbiota and SCFA in leanand overweight healthy subjects
-
Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195.
-
(2010)
Obesity
, vol.18
, pp. 190-195
-
-
Schwiertz, A.1
Taras, D.2
Schäfer, K.3
Beijer, S.4
Bos, N.A.5
Donus, C.6
Hardt, P.D.7
-
60
-
-
85040451505
-
Low amounts of dietary fibreincrease in vitro production of short-chain fatty acids without changing human colonic microbiota structure
-
Sasaki, D.; Sasaki, K.; Ikuta, N.; Yasuda, T.; Fukuda, I.; Kondo, A.; Osawa, R. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 2018, 8, 435.
-
(2018)
Sci. Rep.
, vol.8
, pp. 435
-
-
Sasaki, D.1
Sasaki, K.2
Ikuta, N.3
Yasuda, T.4
Fukuda, I.5
Kondo, A.6
Osawa, R.7
-
61
-
-
63849127101
-
Prebiotic oligosaccharides change the concentrations of short-chainfatty acids and the microbial population of mouse bowel
-
Pan, X.; Chen, F.; Wu, T.; Tang, H.; Zhao, Z. Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J. Zhejiang Univ. Sci. B 2009, 10, 258–263.
-
(2009)
J. Zhejiang Univ. Sci. B
, vol.10
, pp. 258-263
-
-
Pan, X.1
Chen, F.2
Wu, T.3
Tang, H.4
Zhao, Z.5
-
62
-
-
84943177844
-
Glycomacropeptide is aprebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatoryin mice
-
Sawin, E.A.; De Wolfe, T.J.; Aktas, B.; Stroup, B.M.; Murali, S.G.; Steele, J.L.; Ney, D.M. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G590–G601.
-
(2015)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.309
, pp. G590-G601
-
-
Sawin, E.A.1
De Wolfe, T.J.2
Aktas, B.3
Stroup, B.M.4
Murali, S.G.5
Steele, J.L.6
Ney, D.M.7
-
63
-
-
85055779809
-
The Impact of Fructo-Oligosaccharideson Gut Permeability and Inflammatory Responses in the Cecal Mucosa Quite Differs between Rats FedSemi-Purified and Non-Purified Diets
-
Genda, T.; Kondo, T.; Hino, S.; Sugiura, S.; Nishimura, N.; Morita, T. The Impact of Fructo-Oligosaccharides on Gut Permeability and Inflammatory Responses in the Cecal Mucosa Quite Differs between Rats Fed Semi-Purified and Non-Purified Diets. J. Nutr. Sci. Vitaminol. 2018, 64, 357–366.
-
(2018)
J. Nutr. Sci. Vitaminol.
, vol.64
, pp. 357-366
-
-
Genda, T.1
Kondo, T.2
Hino, S.3
Sugiura, S.4
Nishimura, N.5
Morita, T.6
-
64
-
-
85054466951
-
Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer
-
Singh, V.; Yeoh, B.S.; Chassaing, B.; Xiao, X.; Saha, P.; Aguilera Olvera, R.; Lapek, J.D.; Zhang, L.; Wang, W.B.; Hao, S., et al. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell 2018, 175, 679–694.
-
(2018)
Cell
, vol.175
, pp. 679-694
-
-
Singh, V.1
Yeoh, B.S.2
Chassaing, B.3
Xiao, X.4
Saha, P.5
Aguilera Olvera, R.6
Lapek, J.D.7
Zhang, L.8
Wang, W.B.9
Hao, S.10
-
65
-
-
85059240887
-
Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut
-
de la Cuesta-Zuluaga, J.; Mueller, N.T.; Álvarez-Quintero, R.; Velásquez-Mejía, E.P.; Sierra, J.A.; Corrales-Agudelo, V.; Carmona, J.A.; Abad, J.M.; Escobar, J.S. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2018, 11, 51.
-
(2018)
Nutrients
, vol.11
, pp. 51
-
-
De La Cuesta-Zuluaga, J.1
Mueller, N.T.2
Álvarez-Quintero, R.3
Velásquez-Mejía, E.P.4
Sierra, J.A.5
Corrales-Agudelo, V.6
Carmona, J.A.7
Abad, J.M.8
Escobar, J.S.9
-
66
-
-
85061738433
-
Causal relationships among the gut microbiome, short-chain fattyacids and metabolic diseases
-
Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vila, A.V.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.M.A.E.; Oosting, M., et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 2019, 51, 600.
-
(2019)
Nat. Genet.
, vol.51
, pp. 600
-
-
Sanna, S.1
Van Zuydam, N.R.2
Mahajan, A.3
Kurilshikov, A.4
Vila, A.V.5
Võsa, U.6
Mujagic, Z.7
Masclee, A.A.M.8
Jonkers, D.M.A.E.9
Oosting, M.10
|