-
1
-
-
0000565591
-
A computer movie simulating urban growth in the Detroit region
-
Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234, doi:10.2307/143141.
-
(1970)
Econ. Geogr.
, vol.46
, pp. 234
-
-
Tobler, W.R.1
-
2
-
-
0038092455
-
-
John Wiley & Sons: Hoboken, NJ, USA
-
Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002.
-
(2002)
Geographically Weighted Regression: The Analysis of Spatially Varying Relationships
-
-
Fotheringham, A.S.1
Brunsdon, C.2
Charlton, M.3
-
3
-
-
85028532966
-
Multi-scale geographically weighted regression
-
Fotheringham, A.S.; Yang, W.; Kang, W. Multi-Scale Geographically Weighted Regression. Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265.
-
(2017)
Ann. Am. Assoc. Geogr.
, vol.107
, pp. 1247-1265
-
-
Fotheringham, A.S.1
Yang, W.2
Kang, W.3
-
4
-
-
85066827911
-
-
Environmental Systems Research Institute ESRI. ESRI: Redlands, CA, USA
-
Environmental Systems Research Institute (ESRI). ArcMap 10.3 Spatial Analyst Toolbox; ESRI: Redlands, CA, USA, 2018.
-
(2018)
ArcMap 10.3 Spatial Analyst Toolbox
-
-
-
7
-
-
85066824229
-
Inference in multiscale geographically weighted regression
-
Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in multiscale geographically weighted regression. Geogr. Anal. 2019, doi:10.31219/osf.io/4dksb.
-
(2019)
Geogr. Anal.
-
-
Yu, H.1
Fotheringham, A.S.2
Li, Z.3
Oshan, T.4
Kang, W.5
Wolf, L.J.6
-
8
-
-
85066880698
-
-
R package version 2.0-5
-
Lu, B.; Harris, P.; Charlton, M.; Brundson, C.; Nayaka, T.; Gollini, I. GWmodel: Geographically-Weighted Models; R package version 2.0-5; 2018.
-
(2018)
GWmodel: Geographically-Weighted Models
-
-
Lu, B.1
Harris, P.2
Charlton, M.3
Brundson, C.4
Nayaka, T.5
Gollini, I.6
-
9
-
-
84999635796
-
Geographically weighted regression with parameter-specific distance metrics
-
Lu, B.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted regression with parameter-specific distance metrics. Int. J. Geogr. Inf. Sci. 2017, 31, 982–998, doi:10.1080/13658816.2016.1263731.
-
(2017)
Int. J. Geogr. Inf. Sci.
, vol.31
, pp. 982-998
-
-
Lu, B.1
Brunsdon, C.2
Charlton, M.3
Harris, P.4
-
10
-
-
85054525344
-
Fast geographically weighted regression (FASTGWR): A scalable algorithm to investigate spatial process heterogeneity in millions of observations
-
Li, Z.; Fotheringham, A.S.; Li, W.; Oshan, T. Fast Geographically Weighted Regression (FastGWR): A Scalable Algorithm to Investigate Spatial Process Heterogeneity in Millions of Observations. Int. J. Geogr. Inf. Sci. 2018, doi:10.1080/13658816.2018.1521523.
-
(2018)
Int. J. Geogr. Inf. Sci.
-
-
Li, Z.1
Fotheringham, A.S.2
Li, W.3
Oshan, T.4
-
11
-
-
60649112018
-
Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR)
-
Griffith, D.A. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ. Plan. A 2008, 40, 2751–2769, doi:10.1068/a38218.
-
(2008)
Environ. Plan. A
, vol.40
, pp. 2751-2769
-
-
Griffith, D.A.1
-
12
-
-
84941299702
-
The multiple testing issue in geographically weighted regression: The multiple testing issue in GWR
-
Da Silva, A.R.; Fotheringham, A.S. The Multiple Testing Issue in Geographically Weighted Regression: The Multiple Testing Issue in GWR. Geogr. Anal. 2015, doi:10.1111/gean.12084.
-
(2015)
Geogr. Anal.
-
-
Da Silva, A.R.1
Fotheringham, A.S.2
-
13
-
-
21244497275
-
Multicollinearity and correlation among local regression coefficients in geographically weighted regression
-
Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187, doi:10.1007/s10109-005-0155-6.
-
(2005)
J. Geogr. Syst.
, vol.7
, pp. 161-187
-
-
Wheeler, D.1
Tiefelsdorf, M.2
-
14
-
-
0003713797
-
-
Wiley: New York, NY, USA
-
Belsey, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; Wiley: New York, NY, USA, 1980.
-
(1980)
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity
-
-
Belsey, D.A.1
Kuh, E.2
Welsch, R.E.3
-
15
-
-
34548599794
-
A caution regarding rules of thumb for variance inflation factors
-
O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690, doi:10.1007/s11135-006-9018-6.
-
(2007)
Qual. Quant.
, vol.41
, pp. 673-690
-
-
O’brien, R.M.1
-
16
-
-
35648994302
-
Diagnostic tools and a remedial method for collinearity in geographically weighted regression
-
Wheeler, D.C. Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression. Environ. Plan. A 2007, 39, 2464–2481, doi:10.1068/a38325.
-
(2007)
Environ. Plan. A
, vol.39
, pp. 2464-2481
-
-
Wheeler, D.C.1
-
17
-
-
84988423788
-
Geographically weighted regression and multicollinearity: Dispelling the myth
-
Fotheringham, A.S.; Oshan, T.M. Geographically weighted regression and multicollinearity: Dispelling the myth. J. Geogr. Syst. 2016, 18, 303–329, doi:10.1007/s10109-016-0239-5.
-
(2016)
J. Geogr. Syst.
, vol.18
, pp. 303-329
-
-
Fotheringham, A.S.1
Oshan, T.M.2
-
18
-
-
85021629223
-
A comparison of spatially varying regression coefficient estimates using geographically weighted and spatial-filter-based techniques: A comparison of spatially varying regression
-
Oshan, T.M.; Fotheringham, A.S. A Comparison of Spatially Varying Regression Coefficient Estimates Using Geographically Weighted and Spatial-Filter-Based Techniques: A Comparison of Spatially Varying Regression. Geogr. Anal. 2017, doi:10.1111/gean.12133.
-
(2017)
Geogr. Anal.
-
-
Oshan, T.M.1
Fotheringham, A.S.2
-
19
-
-
85059492326
-
-
arXivt
-
Murakami, D.; Lu, B.; Harris, P.; Brunsdon, C.; Charlton, M.; Nakaya, T.; Griffith, D.A. The importance of scale in spatially varying coefficient modeling. arXivt 2017, arXiv:1709.08764.
-
(2017)
The Importance of Scale in Spatially Varying Coefficient Modeling
-
-
Murakami, D.1
Lu, B.2
Harris, P.3
Brunsdon, C.4
Charlton, M.5
Nakaya, T.6
Griffith, D.A.7
-
20
-
-
77954860974
-
The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets
-
Harris, P.; Fotheringham, A.S.; Crespo, R.; Charlton, M. The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets. Math. Geosci. 2010, 42, 657–680, doi:10.1007/s11004-010-9284-7.
-
(2010)
Math. Geosci.
, vol.42
, pp. 657-680
-
-
Harris, P.1
Fotheringham, A.S.2
Crespo, R.3
Charlton, M.4
-
21
-
-
85045019312
-
Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths
-
Lu, B.; Yang, W.; Ge, Y.; Harris, P. Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Comput. Environ. Urban Syst. 2018. doi:10.1016/j.compenvurbsys.2018.03.012.
-
(2018)
Comput. Environ. Urban Syst.
-
-
Lu, B.1
Yang, W.2
Ge, Y.3
Harris, P.4
-
22
-
-
85049921191
-
Distance metric choice can both reduce and induce collinearity in geographically weighted regression
-
Comber, A.; Chi, K.; Quang Huy, M.; Nguyen, Q.; Lu, B.; Huu Phe, H.; Harris, P. Distance metric choice can both reduce and induce collinearity in geographically weighted regression. Environ. Plan. B Urban Anal. City Sci. 2018. doi:10.1177/2399808318784017.
-
(2018)
Environ. Plan. B Urban Anal. City Sci.
-
-
Comber, A.1
Chi, K.2
Quang Huy, M.3
Nguyen, Q.4
Lu, B.5
Huu Phe, H.6
Harris, P.7
|