메뉴 건너뛰기




Volumn 8, Issue 6, 2019, Pages

MGWR: A python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale

Author keywords

Gwr; Heterogeneity; Mgwr; Multiscale; Scale; Spatial statistics

Indexed keywords


EID: 85066826194     PISSN: None     EISSN: 22209964     Source Type: Journal    
DOI: 10.3390/ijgi8060269     Document Type: Article
Times cited : (469)

References (22)
  • 1
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234, doi:10.2307/143141.
    • (1970) Econ. Geogr. , vol.46 , pp. 234
    • Tobler, W.R.1
  • 3
    • 85028532966 scopus 로고    scopus 로고
    • Multi-scale geographically weighted regression
    • Fotheringham, A.S.; Yang, W.; Kang, W. Multi-Scale Geographically Weighted Regression. Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265.
    • (2017) Ann. Am. Assoc. Geogr. , vol.107 , pp. 1247-1265
    • Fotheringham, A.S.1    Yang, W.2    Kang, W.3
  • 4
    • 85066827911 scopus 로고    scopus 로고
    • Environmental Systems Research Institute ESRI. ESRI: Redlands, CA, USA
    • Environmental Systems Research Institute (ESRI). ArcMap 10.3 Spatial Analyst Toolbox; ESRI: Redlands, CA, USA, 2018.
    • (2018) ArcMap 10.3 Spatial Analyst Toolbox
  • 9
    • 84999635796 scopus 로고    scopus 로고
    • Geographically weighted regression with parameter-specific distance metrics
    • Lu, B.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted regression with parameter-specific distance metrics. Int. J. Geogr. Inf. Sci. 2017, 31, 982–998, doi:10.1080/13658816.2016.1263731.
    • (2017) Int. J. Geogr. Inf. Sci. , vol.31 , pp. 982-998
    • Lu, B.1    Brunsdon, C.2    Charlton, M.3    Harris, P.4
  • 10
    • 85054525344 scopus 로고    scopus 로고
    • Fast geographically weighted regression (FASTGWR): A scalable algorithm to investigate spatial process heterogeneity in millions of observations
    • Li, Z.; Fotheringham, A.S.; Li, W.; Oshan, T. Fast Geographically Weighted Regression (FastGWR): A Scalable Algorithm to Investigate Spatial Process Heterogeneity in Millions of Observations. Int. J. Geogr. Inf. Sci. 2018, doi:10.1080/13658816.2018.1521523.
    • (2018) Int. J. Geogr. Inf. Sci.
    • Li, Z.1    Fotheringham, A.S.2    Li, W.3    Oshan, T.4
  • 11
    • 60649112018 scopus 로고    scopus 로고
    • Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR)
    • Griffith, D.A. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ. Plan. A 2008, 40, 2751–2769, doi:10.1068/a38218.
    • (2008) Environ. Plan. A , vol.40 , pp. 2751-2769
    • Griffith, D.A.1
  • 12
    • 84941299702 scopus 로고    scopus 로고
    • The multiple testing issue in geographically weighted regression: The multiple testing issue in GWR
    • Da Silva, A.R.; Fotheringham, A.S. The Multiple Testing Issue in Geographically Weighted Regression: The Multiple Testing Issue in GWR. Geogr. Anal. 2015, doi:10.1111/gean.12084.
    • (2015) Geogr. Anal.
    • Da Silva, A.R.1    Fotheringham, A.S.2
  • 13
    • 21244497275 scopus 로고    scopus 로고
    • Multicollinearity and correlation among local regression coefficients in geographically weighted regression
    • Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187, doi:10.1007/s10109-005-0155-6.
    • (2005) J. Geogr. Syst. , vol.7 , pp. 161-187
    • Wheeler, D.1    Tiefelsdorf, M.2
  • 15
    • 34548599794 scopus 로고    scopus 로고
    • A caution regarding rules of thumb for variance inflation factors
    • O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690, doi:10.1007/s11135-006-9018-6.
    • (2007) Qual. Quant. , vol.41 , pp. 673-690
    • O’brien, R.M.1
  • 16
    • 35648994302 scopus 로고    scopus 로고
    • Diagnostic tools and a remedial method for collinearity in geographically weighted regression
    • Wheeler, D.C. Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression. Environ. Plan. A 2007, 39, 2464–2481, doi:10.1068/a38325.
    • (2007) Environ. Plan. A , vol.39 , pp. 2464-2481
    • Wheeler, D.C.1
  • 17
    • 84988423788 scopus 로고    scopus 로고
    • Geographically weighted regression and multicollinearity: Dispelling the myth
    • Fotheringham, A.S.; Oshan, T.M. Geographically weighted regression and multicollinearity: Dispelling the myth. J. Geogr. Syst. 2016, 18, 303–329, doi:10.1007/s10109-016-0239-5.
    • (2016) J. Geogr. Syst. , vol.18 , pp. 303-329
    • Fotheringham, A.S.1    Oshan, T.M.2
  • 18
    • 85021629223 scopus 로고    scopus 로고
    • A comparison of spatially varying regression coefficient estimates using geographically weighted and spatial-filter-based techniques: A comparison of spatially varying regression
    • Oshan, T.M.; Fotheringham, A.S. A Comparison of Spatially Varying Regression Coefficient Estimates Using Geographically Weighted and Spatial-Filter-Based Techniques: A Comparison of Spatially Varying Regression. Geogr. Anal. 2017, doi:10.1111/gean.12133.
    • (2017) Geogr. Anal.
    • Oshan, T.M.1    Fotheringham, A.S.2
  • 20
    • 77954860974 scopus 로고    scopus 로고
    • The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets
    • Harris, P.; Fotheringham, A.S.; Crespo, R.; Charlton, M. The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets. Math. Geosci. 2010, 42, 657–680, doi:10.1007/s11004-010-9284-7.
    • (2010) Math. Geosci. , vol.42 , pp. 657-680
    • Harris, P.1    Fotheringham, A.S.2    Crespo, R.3    Charlton, M.4
  • 21
    • 85045019312 scopus 로고    scopus 로고
    • Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths
    • Lu, B.; Yang, W.; Ge, Y.; Harris, P. Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Comput. Environ. Urban Syst. 2018. doi:10.1016/j.compenvurbsys.2018.03.012.
    • (2018) Comput. Environ. Urban Syst.
    • Lu, B.1    Yang, W.2    Ge, Y.3    Harris, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.