메뉴 건너뛰기




Volumn 50, Issue 1, 2018, Pages 53-75

A Comparison of Spatially Varying Regression Coefficient Estimates Using Geographically Weighted and Spatial-Filter-Based Techniques

Author keywords

[No Author keywords available]

Indexed keywords

COMPARATIVE STUDY; ERROR ANALYSIS; ESTIMATION METHOD; REGRESSION ANALYSIS; SPATIAL VARIATION;

EID: 85021629223     PISSN: 00167363     EISSN: 15384632     Source Type: Journal    
DOI: 10.1111/gean.12133     Document Type: Article
Times cited : (58)

References (29)
  • 2
    • 84879398938 scopus 로고    scopus 로고
    • A Lasso for Hierarchical Interactions
    • Bien, J., J. Taylor, and R. Tibshirani. (2013). “A Lasso for Hierarchical Interactions.” The Annals of Statistics 41(3), 1111–41.
    • (2013) The Annals of Statistics , vol.41 , Issue.3 , pp. 1111-1141
    • Bien, J.1    Taylor, J.2    Tibshirani, R.3
  • 3
    • 0032953112 scopus 로고    scopus 로고
    • A Variance-Stabilizing Coding Scheme for Spatial Link Matrices
    • Boots, B. (1999). “A Variance-Stabilizing Coding Scheme for Spatial Link Matrices.” Environment and Planning A 31, 165–80.
    • (1999) Environment and Planning A , vol.31 , pp. 165-180
    • Boots, B.1
  • 4
    • 84860385540 scopus 로고    scopus 로고
    • Assessment of Spatiotemporal Varying Relationships Between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression
    • Brown, S., V. L. Versace, L. Laurenson, D. Ierodiaconou, J. Fawcett, and S. Salzman. (2011). “Assessment of Spatiotemporal Varying Relationships Between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression.” Environmental Modeling & Assessment 17(3), 241–54.
    • (2011) Environmental Modeling & Assessment , vol.17 , Issue.3 , pp. 241-254
    • Brown, S.1    Versace, V.L.2    Laurenson, L.3    Ierodiaconou, D.4    Fawcett, J.5    Salzman, S.6
  • 5
    • 34249703491 scopus 로고    scopus 로고
    • Using Geographically Weighted Regression to Explore Local Crime Patterns
    • Cahill, M., and G. Mulligan. (2007). “Using Geographically Weighted Regression to Explore Local Crime Patterns.” Social Science Computer Review 25(2), 174–93.
    • (2007) Social Science Computer Review , vol.25 , Issue.2 , pp. 174-193
    • Cahill, M.1    Mulligan, G.2
  • 6
    • 57049168201 scopus 로고    scopus 로고
    • Modeling Network Autocorrelation Within Migration Flows by Eigenvector Spatial Filtering
    • Chun, Y. (2008). “Modeling Network Autocorrelation Within Migration Flows by Eigenvector Spatial Filtering.” Journal of Geographical Systems 10(4), 317–44.
    • (2008) Journal of Geographical Systems , vol.10 , Issue.4 , pp. 317-344
    • Chun, Y.1
  • 7
    • 84941299702 scopus 로고    scopus 로고
    • The Multiple Testing Issue in Geographically Weighted Regression: The Multiple Testing Issue in GWR
    • da Silva, A. R., and A. S. Fotheringham. (2015). The Multiple Testing Issue in Geographically Weighted Regression: The Multiple Testing Issue in GWR. Geographical Analysis 48(3), 233–47.
    • (2015) Geographical Analysis , vol.48 , Issue.3 , pp. 233-247
    • da Silva, A.R.1    Fotheringham, A.S.2
  • 8
    • 0343861903 scopus 로고    scopus 로고
    • Local Forms of Spatial Analysis
    • Fotheringham, A. S., and C. Brunsdon. (1999). “Local Forms of Spatial Analysis.” Geographical Analysis 31(4), 340–58.
    • (1999) Geographical Analysis , vol.31 , Issue.4 , pp. 340-358
    • Fotheringham, A.S.1    Brunsdon, C.2
  • 10
    • 84945465775 scopus 로고    scopus 로고
    • Geographical and Temporal Weighted Regression (GTWR)
    • Fotheringham, A. S., R. Crespo, and J. Yao. (2015). “Geographical and Temporal Weighted Regression (GTWR).” Geographical Analysis 47(4), 431–52.
    • (2015) Geographical Analysis , vol.47 , Issue.4 , pp. 431-452
    • Fotheringham, A.S.1    Crespo, R.2    Yao, J.3
  • 11
    • 84988423788 scopus 로고    scopus 로고
    • Geographically Weighted Regression and Multiocollinearity: Dispelling the Myth
    • Fotheringham, A. S., and T. M. Oshan. (2016). “Geographically Weighted Regression and Multiocollinearity: Dispelling the Myth.” Journal of Geograpical Systems 18, 303–29.
    • (2016) Journal of Geograpical Systems , vol.18 , pp. 303-329
    • Fotheringham, A.S.1    Oshan, T.M.2
  • 12
    • 85040807341 scopus 로고    scopus 로고
    • (in press). Mutliscale GWR A Model to Quantify Scale in Spatial Processes., The Annals of the Association of American Geographers
    • Fotheringham, A. S., W. Yang, and W. Kang. (in press). Mutliscale GWR: A Model to Quantify Scale in Spatial Processes. The Annals of the Association of American Geographers.
    • Fotheringham, A.S.1    Yang, W.2    Kang, W.3
  • 14
    • 78149470829 scopus 로고    scopus 로고
    • Using Geographically Weighted Regression for Environmental Justice Analysis: Cumulative Cancer Risks from Air Toxics in Florida
    • Gilbert, A., and J. Chakraborty. (2011). “Using Geographically Weighted Regression for Environmental Justice Analysis: Cumulative Cancer Risks from Air Toxics in Florida.” Social Science Research 40(1), 273–86.
    • (2011) Social Science Research , vol.40 , Issue.1 , pp. 273-286
    • Gilbert, A.1    Chakraborty, J.2
  • 15
    • 0030324402 scopus 로고    scopus 로고
    • Spatial Autocorrelation and Eigenfunctions of the Geographic Weights Matrix Accompanying Geo-Referenced Data
    • Griffith, D. A. (1996). “Spatial Autocorrelation and Eigenfunctions of the Geographic Weights Matrix Accompanying Geo-Referenced Data.” Canadian Geographer/Le Gographe Canadien 40(4), 351–67.
    • (1996) Canadian Geographer/Le Gographe Canadien , vol.40 , Issue.4 , pp. 351-367
    • Griffith, D.A.1
  • 16
    • 60649112018 scopus 로고    scopus 로고
    • Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression (GWR)
    • Griffith, D. A. (2008). “Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression (GWR).” Environment and Planning A 40(11), 2751–69.
    • (2008) Environment and Planning A , vol.40 , Issue.11 , pp. 2751-2769
    • Griffith, D.A.1
  • 17
    • 79952243092 scopus 로고    scopus 로고
    • Visualizing Analytical Spatial Autocorrelation Components Latent in Spatial Interaction Data: An Eigenvector Spatial Filter Approach
    • Griffith, D. A. (2011). “Visualizing Analytical Spatial Autocorrelation Components Latent in Spatial Interaction Data: An Eigenvector Spatial Filter Approach.” Computers, Environment and Urban Systems 35(2), 140–9.
    • (2011) Computers, Environment and Urban Systems , vol.35 , Issue.2 , pp. 140-149
    • Griffith, D.A.1
  • 18
    • 84953723258 scopus 로고    scopus 로고
    • Spatially Varying Coefficient Models in Real Estate: Eigenvector Spatial Filtering and Alternative Approaches
    • Helbich, M., and D. A. Griffith. (2016). “Spatially Varying Coefficient Models in Real Estate: Eigenvector Spatial Filtering and Alternative Approaches.” Computers, Environment and Urban Systems 57, 1–11.
    • (2016) Computers, Environment and Urban Systems , vol.57 , pp. 1-11
    • Helbich, M.1    Griffith, D.A.2
  • 19
    • 79960981893 scopus 로고    scopus 로고
    • Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love
    • Hodges, J. S., and B. J. Reich. (2010). “Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love.” The American Statistician 64(4), 325–34.
    • (2010) The American Statistician , vol.64 , Issue.4 , pp. 325-334
    • Hodges, J.S.1    Reich, B.J.2
  • 20
    • 85008513895 scopus 로고    scopus 로고
    • Calibrating a Geographically Weighted Regression Model with Parameter-specific Distance Metrics
    • Lu, B., P. Harris, M. Charlton, and C. Brunsdon. (2015). “Calibrating a Geographically Weighted Regression Model with Parameter-specific Distance Metrics.” Procedia Environmental Sciences 26, 109–14.
    • (2015) Procedia Environmental Sciences , vol.26 , pp. 109-114
    • Lu, B.1    Harris, P.2    Charlton, M.3    Brunsdon, C.4
  • 21
    • 79957607918 scopus 로고    scopus 로고
    • Spatial Nonstationarity and the Scale of Species-Environment Relationships in the Mojave Desert, California, USA
    • Miller, J. A., and R. Q. Hanham. (2011). “Spatial Nonstationarity and the Scale of Species-Environment Relationships in the Mojave Desert, California, USA.” International Journal of Geographical Information Science 25(3), 423–38.
    • (2011) International Journal of Geographical Information Science , vol.25 , Issue.3 , pp. 423-438
    • Miller, J.A.1    Hanham, R.Q.2
  • 22
    • 34548599794 scopus 로고    scopus 로고
    • A Caution Regarding Rules of Thumb for Variance Inflation Factors
    • Obrien, R. M.(2007). “A Caution Regarding Rules of Thumb for Variance Inflation Factors.” Quality & Quantity 41(5), 673–90.
    • (2007) Quality & Quantity , vol.41 , Issue.5 , pp. 673-690
    • Obrien, R.M.1
  • 23
    • 83455179706 scopus 로고    scopus 로고
    • A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships
    • Páez, A., S. Farber, and D. Wheeler. (2011). “A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships.” Environment and Planning A 43(12), 2992–3010.
    • (2011) Environment and Planning A , vol.43 , Issue.12 , pp. 2992-3010
    • Páez, A.1    Farber, S.2    Wheeler, D.3
  • 24
    • 0041472767 scopus 로고    scopus 로고
    • Exploring Bias in a Generalized Additive Model for Spatial Air Pollution Data
    • Ramsay, T., R. Burnett, and D. Krewski. (2003a). “Exploring Bias in a Generalized Additive Model for Spatial Air Pollution Data.” Environmental Health Perspectives 111(10), 1283–8.
    • (2003) Environmental Health Perspectives , vol.111 , Issue.10 , pp. 1283-1288
    • Ramsay, T.1    Burnett, R.2    Krewski, D.3
  • 25
    • 0037209068 scopus 로고    scopus 로고
    • The Effect of Concurvity in Generalized Additive Models Linking Mortality to Ambient Particulate Matter
    • Ramsay, T. O., R. T. Burnett, and D. Krewski. (2003b). “The Effect of Concurvity in Generalized Additive Models Linking Mortality to Ambient Particulate Matter.” Epidemiology 14(1), 18–23.
    • (2003) Epidemiology , vol.14 , Issue.1 , pp. 18-23
    • Ramsay, T.O.1    Burnett, R.T.2    Krewski, D.3
  • 26
    • 34249775531 scopus 로고    scopus 로고
    • Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach
    • Tiefelsdorf, M., and D. A. Griffith. (2007). “Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach.” Environment and Planning A 39(5), 1193–221.
    • (2007) Environment and Planning A , vol.39 , Issue.5 , pp. 1193-1221
    • Tiefelsdorf, M.1    Griffith, D.A.2
  • 27
    • 35648994302 scopus 로고    scopus 로고
    • Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression
    • Wheeler, D. C. (2007). “Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression.” Environment and Planning A 39(10), 2464–81.
    • (2007) Environment and Planning A , vol.39 , Issue.10 , pp. 2464-2481
    • Wheeler, D.C.1
  • 28
    • 85103878007 scopus 로고    scopus 로고
    • Visualizing and Diagnosing Coefficients from Geographically Weighted Regression Models
    • ” In, B. Jiang, X. Yao, Dordrecht, Springer Netherlands
    • Wheeler, D. C. (2010). “Visualizing and Diagnosing Coefficients from Geographically Weighted Regression Models.” In Geospatial Analysis and Modelling of Urban Structure and Dynamics, Vol. 99, 415–36, edited by B. Jiang and X. Yao. Dordrecht: Springer Netherlands.
    • (2010) Geospatial Analysis and Modelling of Urban Structure and Dynamics , vol.99 , pp. 415
    • Wheeler, D.C.1
  • 29
    • 21244497275 scopus 로고    scopus 로고
    • Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression
    • Wheeler, D., and M. Tiefelsdorf. (2005). “Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression.” Journal of Geographical Systems 7(2), 161–87.
    • (2005) Journal of Geographical Systems , vol.7 , Issue.2 , pp. 161-187
    • Wheeler, D.1    Tiefelsdorf, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.