-
2
-
-
84879398938
-
A Lasso for Hierarchical Interactions
-
Bien, J., J. Taylor, and R. Tibshirani. (2013). “A Lasso for Hierarchical Interactions.” The Annals of Statistics 41(3), 1111–41.
-
(2013)
The Annals of Statistics
, vol.41
, Issue.3
, pp. 1111-1141
-
-
Bien, J.1
Taylor, J.2
Tibshirani, R.3
-
3
-
-
0032953112
-
A Variance-Stabilizing Coding Scheme for Spatial Link Matrices
-
Boots, B. (1999). “A Variance-Stabilizing Coding Scheme for Spatial Link Matrices.” Environment and Planning A 31, 165–80.
-
(1999)
Environment and Planning A
, vol.31
, pp. 165-180
-
-
Boots, B.1
-
4
-
-
84860385540
-
Assessment of Spatiotemporal Varying Relationships Between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression
-
Brown, S., V. L. Versace, L. Laurenson, D. Ierodiaconou, J. Fawcett, and S. Salzman. (2011). “Assessment of Spatiotemporal Varying Relationships Between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression.” Environmental Modeling & Assessment 17(3), 241–54.
-
(2011)
Environmental Modeling & Assessment
, vol.17
, Issue.3
, pp. 241-254
-
-
Brown, S.1
Versace, V.L.2
Laurenson, L.3
Ierodiaconou, D.4
Fawcett, J.5
Salzman, S.6
-
5
-
-
34249703491
-
Using Geographically Weighted Regression to Explore Local Crime Patterns
-
Cahill, M., and G. Mulligan. (2007). “Using Geographically Weighted Regression to Explore Local Crime Patterns.” Social Science Computer Review 25(2), 174–93.
-
(2007)
Social Science Computer Review
, vol.25
, Issue.2
, pp. 174-193
-
-
Cahill, M.1
Mulligan, G.2
-
6
-
-
57049168201
-
Modeling Network Autocorrelation Within Migration Flows by Eigenvector Spatial Filtering
-
Chun, Y. (2008). “Modeling Network Autocorrelation Within Migration Flows by Eigenvector Spatial Filtering.” Journal of Geographical Systems 10(4), 317–44.
-
(2008)
Journal of Geographical Systems
, vol.10
, Issue.4
, pp. 317-344
-
-
Chun, Y.1
-
7
-
-
84941299702
-
The Multiple Testing Issue in Geographically Weighted Regression: The Multiple Testing Issue in GWR
-
da Silva, A. R., and A. S. Fotheringham. (2015). The Multiple Testing Issue in Geographically Weighted Regression: The Multiple Testing Issue in GWR. Geographical Analysis 48(3), 233–47.
-
(2015)
Geographical Analysis
, vol.48
, Issue.3
, pp. 233-247
-
-
da Silva, A.R.1
Fotheringham, A.S.2
-
10
-
-
84945465775
-
Geographical and Temporal Weighted Regression (GTWR)
-
Fotheringham, A. S., R. Crespo, and J. Yao. (2015). “Geographical and Temporal Weighted Regression (GTWR).” Geographical Analysis 47(4), 431–52.
-
(2015)
Geographical Analysis
, vol.47
, Issue.4
, pp. 431-452
-
-
Fotheringham, A.S.1
Crespo, R.2
Yao, J.3
-
11
-
-
84988423788
-
Geographically Weighted Regression and Multiocollinearity: Dispelling the Myth
-
Fotheringham, A. S., and T. M. Oshan. (2016). “Geographically Weighted Regression and Multiocollinearity: Dispelling the Myth.” Journal of Geograpical Systems 18, 303–29.
-
(2016)
Journal of Geograpical Systems
, vol.18
, pp. 303-329
-
-
Fotheringham, A.S.1
Oshan, T.M.2
-
12
-
-
85040807341
-
-
(in press). Mutliscale GWR A Model to Quantify Scale in Spatial Processes., The Annals of the Association of American Geographers
-
Fotheringham, A. S., W. Yang, and W. Kang. (in press). Mutliscale GWR: A Model to Quantify Scale in Spatial Processes. The Annals of the Association of American Geographers.
-
-
-
Fotheringham, A.S.1
Yang, W.2
Kang, W.3
-
14
-
-
78149470829
-
Using Geographically Weighted Regression for Environmental Justice Analysis: Cumulative Cancer Risks from Air Toxics in Florida
-
Gilbert, A., and J. Chakraborty. (2011). “Using Geographically Weighted Regression for Environmental Justice Analysis: Cumulative Cancer Risks from Air Toxics in Florida.” Social Science Research 40(1), 273–86.
-
(2011)
Social Science Research
, vol.40
, Issue.1
, pp. 273-286
-
-
Gilbert, A.1
Chakraborty, J.2
-
15
-
-
0030324402
-
Spatial Autocorrelation and Eigenfunctions of the Geographic Weights Matrix Accompanying Geo-Referenced Data
-
Griffith, D. A. (1996). “Spatial Autocorrelation and Eigenfunctions of the Geographic Weights Matrix Accompanying Geo-Referenced Data.” Canadian Geographer/Le Gographe Canadien 40(4), 351–67.
-
(1996)
Canadian Geographer/Le Gographe Canadien
, vol.40
, Issue.4
, pp. 351-367
-
-
Griffith, D.A.1
-
16
-
-
60649112018
-
Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression (GWR)
-
Griffith, D. A. (2008). “Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression (GWR).” Environment and Planning A 40(11), 2751–69.
-
(2008)
Environment and Planning A
, vol.40
, Issue.11
, pp. 2751-2769
-
-
Griffith, D.A.1
-
17
-
-
79952243092
-
Visualizing Analytical Spatial Autocorrelation Components Latent in Spatial Interaction Data: An Eigenvector Spatial Filter Approach
-
Griffith, D. A. (2011). “Visualizing Analytical Spatial Autocorrelation Components Latent in Spatial Interaction Data: An Eigenvector Spatial Filter Approach.” Computers, Environment and Urban Systems 35(2), 140–9.
-
(2011)
Computers, Environment and Urban Systems
, vol.35
, Issue.2
, pp. 140-149
-
-
Griffith, D.A.1
-
18
-
-
84953723258
-
Spatially Varying Coefficient Models in Real Estate: Eigenvector Spatial Filtering and Alternative Approaches
-
Helbich, M., and D. A. Griffith. (2016). “Spatially Varying Coefficient Models in Real Estate: Eigenvector Spatial Filtering and Alternative Approaches.” Computers, Environment and Urban Systems 57, 1–11.
-
(2016)
Computers, Environment and Urban Systems
, vol.57
, pp. 1-11
-
-
Helbich, M.1
Griffith, D.A.2
-
19
-
-
79960981893
-
Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love
-
Hodges, J. S., and B. J. Reich. (2010). “Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love.” The American Statistician 64(4), 325–34.
-
(2010)
The American Statistician
, vol.64
, Issue.4
, pp. 325-334
-
-
Hodges, J.S.1
Reich, B.J.2
-
20
-
-
85008513895
-
Calibrating a Geographically Weighted Regression Model with Parameter-specific Distance Metrics
-
Lu, B., P. Harris, M. Charlton, and C. Brunsdon. (2015). “Calibrating a Geographically Weighted Regression Model with Parameter-specific Distance Metrics.” Procedia Environmental Sciences 26, 109–14.
-
(2015)
Procedia Environmental Sciences
, vol.26
, pp. 109-114
-
-
Lu, B.1
Harris, P.2
Charlton, M.3
Brunsdon, C.4
-
21
-
-
79957607918
-
Spatial Nonstationarity and the Scale of Species-Environment Relationships in the Mojave Desert, California, USA
-
Miller, J. A., and R. Q. Hanham. (2011). “Spatial Nonstationarity and the Scale of Species-Environment Relationships in the Mojave Desert, California, USA.” International Journal of Geographical Information Science 25(3), 423–38.
-
(2011)
International Journal of Geographical Information Science
, vol.25
, Issue.3
, pp. 423-438
-
-
Miller, J.A.1
Hanham, R.Q.2
-
22
-
-
34548599794
-
A Caution Regarding Rules of Thumb for Variance Inflation Factors
-
Obrien, R. M.(2007). “A Caution Regarding Rules of Thumb for Variance Inflation Factors.” Quality & Quantity 41(5), 673–90.
-
(2007)
Quality & Quantity
, vol.41
, Issue.5
, pp. 673-690
-
-
Obrien, R.M.1
-
23
-
-
83455179706
-
A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships
-
Páez, A., S. Farber, and D. Wheeler. (2011). “A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships.” Environment and Planning A 43(12), 2992–3010.
-
(2011)
Environment and Planning A
, vol.43
, Issue.12
, pp. 2992-3010
-
-
Páez, A.1
Farber, S.2
Wheeler, D.3
-
24
-
-
0041472767
-
Exploring Bias in a Generalized Additive Model for Spatial Air Pollution Data
-
Ramsay, T., R. Burnett, and D. Krewski. (2003a). “Exploring Bias in a Generalized Additive Model for Spatial Air Pollution Data.” Environmental Health Perspectives 111(10), 1283–8.
-
(2003)
Environmental Health Perspectives
, vol.111
, Issue.10
, pp. 1283-1288
-
-
Ramsay, T.1
Burnett, R.2
Krewski, D.3
-
25
-
-
0037209068
-
The Effect of Concurvity in Generalized Additive Models Linking Mortality to Ambient Particulate Matter
-
Ramsay, T. O., R. T. Burnett, and D. Krewski. (2003b). “The Effect of Concurvity in Generalized Additive Models Linking Mortality to Ambient Particulate Matter.” Epidemiology 14(1), 18–23.
-
(2003)
Epidemiology
, vol.14
, Issue.1
, pp. 18-23
-
-
Ramsay, T.O.1
Burnett, R.T.2
Krewski, D.3
-
26
-
-
34249775531
-
Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach
-
Tiefelsdorf, M., and D. A. Griffith. (2007). “Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach.” Environment and Planning A 39(5), 1193–221.
-
(2007)
Environment and Planning A
, vol.39
, Issue.5
, pp. 1193-1221
-
-
Tiefelsdorf, M.1
Griffith, D.A.2
-
27
-
-
35648994302
-
Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression
-
Wheeler, D. C. (2007). “Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression.” Environment and Planning A 39(10), 2464–81.
-
(2007)
Environment and Planning A
, vol.39
, Issue.10
, pp. 2464-2481
-
-
Wheeler, D.C.1
-
28
-
-
85103878007
-
Visualizing and Diagnosing Coefficients from Geographically Weighted Regression Models
-
” In, B. Jiang, X. Yao, Dordrecht, Springer Netherlands
-
Wheeler, D. C. (2010). “Visualizing and Diagnosing Coefficients from Geographically Weighted Regression Models.” In Geospatial Analysis and Modelling of Urban Structure and Dynamics, Vol. 99, 415–36, edited by B. Jiang and X. Yao. Dordrecht: Springer Netherlands.
-
(2010)
Geospatial Analysis and Modelling of Urban Structure and Dynamics
, vol.99
, pp. 415
-
-
Wheeler, D.C.1
-
29
-
-
21244497275
-
Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression
-
Wheeler, D., and M. Tiefelsdorf. (2005). “Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression.” Journal of Geographical Systems 7(2), 161–87.
-
(2005)
Journal of Geographical Systems
, vol.7
, Issue.2
, pp. 161-187
-
-
Wheeler, D.1
Tiefelsdorf, M.2
|