메뉴 건너뛰기




Volumn 31, Issue 5, 2017, Pages 982-998

Geographically weighted regression with parameter-specific distance metrics

Author keywords

GWmodel; GWR; local regression; model anisotropy; spatial heterogeneity

Indexed keywords

ACCURACY ASSESSMENT; CALIBRATION; DATA SET; GIS; NUMERICAL MODEL; REGRESSION ANALYSIS; SPATIAL DATA; SPATIAL VARIATION;

EID: 84999635796     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2016.1263731     Document Type: Article
Times cited : (104)

References (35)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Tsahkadsor, Armenian SSR
    • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In:2nd international symposium on information theory, 2–8 September, Tsahkadsor, Armenian SSR, 267–281.
    • (1973) In: 2nd international symposium on information theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0041530204 scopus 로고    scopus 로고
    • Space varying coefficient models for small area data
    • Assunção, R.M., 2003. Space varying coefficient models for small area data. Environmetrics, 14 (5), 453–473. doi:10.1002/env.599
    • (2003) Environmetrics , vol.14 , Issue.5 , pp. 453-473
    • Assunção, R.M.1
  • 3
    • 0001245944 scopus 로고
    • An alternative method of cross-validation for the smoothing of density estimates
    • Bowman, A.W., 1984. An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71 (2), 353–360. doi:10.1093/biomet/71.2.353
    • (1984) Biometrika , vol.71 , Issue.2 , pp. 353-360
    • Bowman, A.W.1
  • 4
    • 0000722130 scopus 로고    scopus 로고
    • Some notes on parametric significance tests for geographically weighted regression
    • Brunsdon, C., Fotheringham, A.S., and Charlton, M., 1999. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science, 39 (3), 497–524. doi:10.1111/0022-4146.00146
    • (1999) Journal of Regional Science , vol.39 , Issue.3 , pp. 497-524
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.3
  • 5
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: a method for exploring spatial nonstationarity
    • Brunsdon, C., Fotheringham, A.S., and Charlton, M.E., 1996. Geographically weighted regression:a method for exploring spatial nonstationarity. Geographical Analysis, 28 (4), 281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
    • (1996) Geographical Analysis , vol.28 , Issue.4 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 6
    • 84982770928 scopus 로고
    • Generating models by the expansion method: applications to geographical research
    • Casetti, E., 1972. Generating models by the expansion method:applications to geographical research. Geographical Analysis, 4 (1), 81–91. doi:10.1111/j.1538-4632.1972.tb00458.x
    • (1972) Geographical Analysis , vol.4 , Issue.1 , pp. 81-91
    • Casetti, E.1
  • 7
    • 77953355421 scopus 로고    scopus 로고
    • Geographically weighted regression bandwidth selection and spatial autocorrelation: an empirical example using Chinese agriculture data
    • Cho, S.-H., Lambert, D.M., and Chen, Z., 2010. Geographically weighted regression bandwidth selection and spatial autocorrelation:an empirical example using Chinese agriculture data. Applied Economics Letters, 17 (8), 767–772. doi:10.1080/13504850802314452
    • (2010) Applied Economics Letters , vol.17 , Issue.8 , pp. 767-772
    • Cho, S.-H.1    Lambert, D.M.2    Chen, Z.3
  • 8
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74 (368), 829–836. doi:10.1080/01621459.1979.10481038
    • (1979) Journal of the American Statistical Association , vol.74 , Issue.368 , pp. 829-836
    • Cleveland, W.S.1
  • 9
    • 35748982456 scopus 로고    scopus 로고
    • A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations
    • Farber, S., and Páez, A., 2007. A systematic investigation of cross-validation in GWR model estimation:empirical analysis and Monte Carlo simulations. Journal of Geographical Systems, 9 (4), 371–396. doi:10.1007/s10109-007-0051-3
    • (2007) Journal of Geographical Systems , vol.9 , Issue.4 , pp. 371-396
    • Farber, S.1    Páez, A.2
  • 10
    • 0343861903 scopus 로고    scopus 로고
    • Local forms of spatial analysis
    • Fotheringham, A.S., and Brunsdon, C., 1999. Local forms of spatial analysis. Geographical Analysis, 31 (4), 340–358. doi:10.1111/j.1538-4632.1999.tb00989.x
    • (1999) Geographical Analysis , vol.31 , Issue.4 , pp. 340-358
    • Fotheringham, A.S.1    Brunsdon, C.2
  • 12
    • 84945465775 scopus 로고    scopus 로고
    • Geographical and Temporal Weighted Regression (GTWR)
    • Fotheringham, A.S., Crespo, R., and Yao, J., 2015. Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, 47 (4), 431–452. doi:10.1111/gean.2015.47.issue-4
    • (2015) Geographical Analysis , vol.47 , Issue.4 , pp. 431-452
    • Fotheringham, A.S.1    Crespo, R.2    Yao, J.3
  • 13
    • 0042744714 scopus 로고    scopus 로고
    • Spatial modeling with spatially varying coefficient processes
    • Gelfand, A.E., et al., 2003. Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association, 98 (462), 387–396. doi:10.1198/016214503000170
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.462 , pp. 387-396
    • Gelfand, A.E.1
  • 14
    • 84922560278 scopus 로고    scopus 로고
    • GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models
    • Gollini, I., et al., 2015. GWmodel:an R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistical Software, 63 (17), 1–50. doi:10.18637/jss.v063.i17
    • (2015) Journal of Statistical Software , vol.63 , Issue.17 , pp. 1-50
    • Gollini, I.1
  • 15
    • 28444486932 scopus 로고    scopus 로고
    • The validity and usefulness of laws in geographic information science and geography
    • Goodchild, M.F., 2004. The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers, 94 (2), 300–303. doi:10.1111/j.1467-8306.2004.09402008.x
    • (2004) Annals of the Association of American Geographers , vol.94 , Issue.2 , pp. 300-303
    • Goodchild, M.F.1
  • 16
    • 0003074252 scopus 로고
    • Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling
    • Gorr, W.L., and Olligschlaeger, A.M., 1994. Weighted spatial adaptive filtering:Monte Carlo studies and application to illicit drug market modeling. Geographical Analysis, 26 (1), 67–87. doi:10.1111/j.1538-4632.1994.tb00311.x
    • (1994) Geographical Analysis , vol.26 , Issue.1 , pp. 67-87
    • Gorr, W.L.1    Olligschlaeger, A.M.2
  • 17
    • 60649112018 scopus 로고    scopus 로고
    • Spatial-filtering-based contributions to a critique of Geographically Weighted Regression (GWR)
    • Griffith, D.A., 2008. Spatial-filtering-based contributions to a critique of Geographically Weighted Regression (GWR). Environment and Planning A, 40 (11), 2751–2769. doi:10.1068/a38218
    • (2008) Environment and Planning A , vol.40 , Issue.11 , pp. 2751-2769
    • Griffith, D.A.1
  • 18
    • 84888877907 scopus 로고    scopus 로고
    • Using contextualized geographically weighted regression to model the spatial heterogeneity of land prices in Beijing, China
    • Harris, R., Dong, G., and Zhang, W., 2013. Using contextualized geographically weighted regression to model the spatial heterogeneity of land prices in Beijing, China. Transactions in GIS, 17 (6), 901–919. doi:10.1111/tgis.2013.17.issue-6
    • (2013) Transactions in GIS , vol.17 , Issue.6 , pp. 901-919
    • Harris, R.1    Dong, G.2    Zhang, W.3
  • 19
    • 84972488102 scopus 로고
    • Generalized additive models
    • Hastie, T., and Tibshirani, R., 1986. Generalized additive models. Statistical Science, 1 (3), 297–310. doi:10.1214/ss/1177013604
    • (1986) Statistical Science , vol.1 , Issue.3 , pp. 297-310
    • Hastie, T.1    Tibshirani, R.2
  • 20
    • 84948783167 scopus 로고
    • The hat matrix in regression and ANOVA
    • Hoaglin, D.C., and Welsch, R.E., 1978. The hat matrix in regression and ANOVA. The American Statistician, 32 (1), 17–22.
    • (1978) The American Statistician , vol.32 , Issue.1 , pp. 17-22
    • Hoaglin, D.C.1    Welsch, R.E.2
  • 21
    • 77949339739 scopus 로고    scopus 로고
    • Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices
    • Huang, B., Wu, B., and Barry, M., 2010. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24 (3), 383–401. doi:10.1080/13658810802672469
    • (2010) International Journal of Geographical Information Science , vol.24 , Issue.3 , pp. 383-401
    • Huang, B.1    Wu, B.2    Barry, M.3
  • 23
    • 84948075260 scopus 로고    scopus 로고
    • The Minkowski approach for choosing the distance metric in geographically weighted regression
    • Lu, B., et al., 2016. The Minkowski approach for choosing the distance metric in geographically weighted regression. International Journal of Geographical Information Science, 30 (2), 351–368. doi:10.1080/13658816.2015.1087001
    • (2016) International Journal of Geographical Information Science , vol.30 , Issue.2 , pp. 351-368
    • Lu, B.1
  • 24
    • 84857414565 scopus 로고    scopus 로고
    • Geographically weighted regression using a non-euclidean distance metric with a study on London house price data
    • Lu, B., Charlton, M., and Fotheringham, A.S., 2011. Geographically weighted regression using a non-euclidean distance metric with a study on London house price data. Procedia Environmental Sciences, 7 (0), 92–97. doi:10.1016/j.proenv.2011.07.017
    • (2011) Procedia Environmental Sciences , vol.7 , pp. 92-97
    • Lu, B.1    Charlton, M.2    Fotheringham, A.S.3
  • 25
    • 84894273575 scopus 로고    scopus 로고
    • Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data
    • Lu, B., et al., 2014a. Geographically weighted regression with a non-Euclidean distance metric:a case study using hedonic house price data. International Journal of Geographical Information Science, 28 (4), 660–681. doi:10.1080/13658816.2013.865739
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.4 , pp. 660-681
    • Lu, B.1
  • 26
    • 84901651260 scopus 로고    scopus 로고
    • The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models
    • Lu, B., et al., 2014b. The GWmodel R package:further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science, 17 (2), 85–101. doi:10.1080/10095020.2014.917453
    • (2014) Geo-Spatial Information Science , vol.17 , Issue.2 , pp. 85-101
    • Lu, B.1
  • 27
    • 85008513895 scopus 로고    scopus 로고
    • Calibrating a geographically weighted regression model with parameter-specific distance metrics
    • Lu, B., et al., 2015. Calibrating a geographically weighted regression model with parameter-specific distance metrics. Procedia Environmental Sciences, 26, 109–114. doi:10.1016/j.proenv.2015.05.011
    • (2015) Procedia Environmental Sciences , vol.26 , pp. 109-114
    • Lu, B.1
  • 28
    • 1642264983 scopus 로고    scopus 로고
    • A note on the mixed geographically weighted regression model
    • Mei, C.-L., He, S.-Y., and Fang, K.-T., 2004. A note on the mixed geographically weighted regression model. Journal of Regional Science, 44 (1), 143–157. doi:10.1111/j.1085-9489.2004.00331.x
    • (2004) Journal of Regional Science , vol.44 , Issue.1 , pp. 143-157
    • Mei, C.-L.1    He, S.-Y.2    Fang, K.-T.3
  • 29
    • 84961209575 scopus 로고    scopus 로고
    • A bootstrap test for constant coefficients in geographically weighted regression models
    • Mei, C.-L., Xu, M., and Wang, N., 2016. A bootstrap test for constant coefficients in geographically weighted regression models. International Journal of Geographical Information Science, 30 (8), 1622–1643.
    • (2016) International Journal of Geographical Information Science , vol.30 , Issue.8 , pp. 1622-1643
    • Mei, C.-L.1    Xu, M.2    Wang, N.3
  • 30
    • 24944468295 scopus 로고    scopus 로고
    • Geographically weighted poisson regression for disease association mapping
    • Nakaya, T., et al., 2005. Geographically weighted poisson regression for disease association mapping. Statistics in Medicine, 24 (17), 2695–2717. doi:10.1002/(ISSN)1097-0258
    • (2005) Statistics in Medicine , vol.24 , Issue.17 , pp. 2695-2717
    • Nakaya, T.1
  • 31
    • 10244255200 scopus 로고    scopus 로고
    • Anisotropic variance functions in geographically weighted regression models
    • Páez, A., 2004. Anisotropic variance functions in geographically weighted regression models. Geographical Analysis, 36 (4), 299–314. doi:10.1111/gean.2004.36.issue-4
    • (2004) Geographical Analysis , vol.36 , Issue.4 , pp. 299-314
    • Páez, A.1
  • 32
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the detroit region
    • Tobler, W.R., 1970. A computer movie simulating urban growth in the detroit region. Economic Geography, 46 (2), 234–240. doi:10.2307/143141
    • (1970) Economic Geography , vol.46 , Issue.2 , pp. 234-240
    • Tobler, W.R.1
  • 35
    • 85008464283 scopus 로고    scopus 로고
    • An extension of geographically weighted regression with flexible bandwidths
    • Lancaster
    • Yang, W., Fotheringham, A.S., and Harris, P., 2012. An extension of geographically weighted regression with flexible bandwidths. Gisruk, 2012, Lancaster. 1–7.
    • (2012) Gisruk , vol.2012 , pp. 1-7
    • Yang, W.1    Fotheringham, A.S.2    Harris, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.