메뉴 건너뛰기




Volumn 33, Issue 1, 2019, Pages 155-175

Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations

Author keywords

Geographically Weighted Regression; GWR; parallel computing; spatial analysis; statistical software

Indexed keywords

ALGORITHM; HEDONIC ANALYSIS; HETEROGENEITY; HOUSING MARKET; PARALLEL COMPUTING; REGRESSION ANALYSIS; SOFTWARE; SPATIAL ANALYSIS;

EID: 85054525344     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2018.1521523     Document Type: Article
Times cited : (75)

References (31)
  • 1
    • 0037265126 scopus 로고    scopus 로고
    • Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression
    • et al
    • Atkinson, P.M., et al., 2003. Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis, 35 (1), 58–82. doi:10.1111/gean.2003.35.issue-1
    • (2003) Geographical Analysis , vol.35 , Issue.1 , pp. 58-82
    • Atkinson, P.M.1
  • 3
    • 84860385540 scopus 로고    scopus 로고
    • Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression
    • et al
    • Brown, S., et al., 2012. Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environmental Modeling & Assessment, 17 (3), 241–254. doi:10.1007/s10666-011-9289-8
    • (2012) Environmental Modeling & Assessment , vol.17 , Issue.3 , pp. 241-254
    • Brown, S.1
  • 4
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: a method for exploring spatial nonstationarity
    • Brunsdon, C., Fotheringham, A.S., and Charlton, M.E., 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28 (4), 281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
    • (1996) Geographical Analysis , vol.28 , Issue.4 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 5
    • 34249703491 scopus 로고    scopus 로고
    • Using geographically weighted regression to explore local crime patterns
    • Cahill, M., and Mulligan, G., 2007. Using geographically weighted regression to explore local crime patterns. Social Science Computer Review, 25 (2), 174–193. doi:10.1177/0894439307298925
    • (2007) Social Science Computer Review , vol.25 , Issue.2 , pp. 174-193
    • Cahill, M.1    Mulligan, G.2
  • 6
    • 84858712087 scopus 로고    scopus 로고
    • Application of geographically weighted regression to the direct forecasting of transit ridership at station-level
    • Cardozo, O.D., García-Palomares, J.C., and Gutiérrez, J., 2012. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geography, 34, 548–558. doi:10.1016/j.apgeog.2012.01.005
    • (2012) Applied Geography , vol.34 , pp. 548-558
    • Cardozo, O.D.1    García-Palomares, J.C.2    Gutiérrez, J.3
  • 7
    • 84941299702 scopus 로고    scopus 로고
    • The multiple testing issue in geographically weighted regression
    • da Silva, A.R., and Fotheringham, A.S., 2016. The multiple testing issue in geographically weighted regression. Geographical Analysis, 48 (3), 233–247. doi:10.1111/gean.2016.48.issue-3
    • (2016) Geographical Analysis , vol.48 , Issue.3 , pp. 233-247
    • da Silva, A.R.1    Fotheringham, A.S.2
  • 8
    • 41449101853 scopus 로고    scopus 로고
    • MPI for Python: performance improvements and MPI-2 extensions
    • et al
    • Dalcín, L., et al., 2008. MPI for Python: performance improvements and MPI-2 extensions. Journal of Parallel and Distributed Computing, 68 (5), 655–662. doi:10.1016/j.jpdc.2007.09.005
    • (2008) Journal of Parallel and Distributed Computing , vol.68 , Issue.5 , pp. 655-662
    • Dalcín, L.1
  • 9
    • 85044135376 scopus 로고    scopus 로고
    • A massive geographically weighted regression model of walking-environment relationships
    • et al
    • Feuillet, T., et al., 2018. A massive geographically weighted regression model of walking-environment relationships. Journal of Transport Geography, 68, 118–129. doi:10.1016/j.jtrangeo.2018.03.002
    • (2018) Journal of Transport Geography , vol.68 , pp. 118-129
    • Feuillet, T.1
  • 12
    • 84945465775 scopus 로고    scopus 로고
    • Geographical and temporal weighted regression (GTWR)
    • Fotheringham, A.S., Crespo, R., and Yao, J., 2015. Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47 (4), 431–452. doi:10.1111/gean.2015.47.issue-4
    • (2015) Geographical Analysis , vol.47 , Issue.4 , pp. 431-452
    • Fotheringham, A.S.1    Crespo, R.2    Yao, J.3
  • 14
    • 35048884271 scopus 로고    scopus 로고
    • Open MPI: goals, concept, and design of a next generation MPI implementation
    • et al, : D. Kranzlmüller, P. Kacsuk, J. Dongarra, eds. , EuroPVM/MPI 2004,. Lecture Notes Computer Science, 3241. Berlin: Springer
    • Gabriel, E., et al. (2004). Open MPI: goals, concept, and design of a next generation MPI implementation. In: D. Kranzlmüller, P. Kacsuk, J. Dongarra, eds. Recent Advances in Parallel Virtual Machine and Message Passing Interface,EuroPVM/MPI 2004. Lecture Notes in Computer Science, 3241. Berlin: Springer.
    • (2004) Recent Advances in Parallel Virtual Machine and Message Passing Interface
    • Gabriel, E.1
  • 16
    • 60649112018 scopus 로고    scopus 로고
    • Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR)
    • Griffith, D.A., 2008. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A, 40 (11), 2751–2769. doi:10.1068/a38218
    • (2008) Environment and Planning A , vol.40 , Issue.11 , pp. 2751-2769
    • Griffith, D.A.1
  • 17
    • 0030243005 scopus 로고    scopus 로고
    • A high-performance, portable implementation of the MPI message passing interface standard
    • et al
    • Gropp, W., et al., 1996. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22 (6), 789–828. doi:10.1016/0167-8191(96)00024-5
    • (1996) Parallel Computing , vol.22 , Issue.6 , pp. 789-828
    • Gropp, W.1
  • 18
    • 74949130472 scopus 로고    scopus 로고
    • Grid‐enabling geographically weighted regression: a case study of participation in higher education in England
    • et al
    • Harris, R., et al., 2010. Grid‐enabling geographically weighted regression: a case study of participation in higher education in England. Transactions in GIS, 14 (1), 43–61. doi:10.1111/tgis.2010.14.issue-1
    • (2010) Transactions in GIS , vol.14 , Issue.1 , pp. 43-61
    • Harris, R.1
  • 21
    • 0037202442 scopus 로고    scopus 로고
    • Should data be partitioned spatially before building large-scale distribution models?
    • Osborne, P.E., and Suárez-Seoane, S., 2002. Should data be partitioned spatially before building large-scale distribution models? Ecological Modelling, 157 (2–3), 249–259. doi:10.1016/S0304-3800(02)00198-9
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 249-259
    • Osborne, P.E.1    Suárez-Seoane, S.2
  • 23
    • 0036205377 scopus 로고    scopus 로고
    • TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing
    • et al
    • Schmidt, H.A., et al., 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18 (3), 502–504.
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 502-504
    • Schmidt, H.A.1
  • 25
    • 35648994302 scopus 로고    scopus 로고
    • Diagnostic tools and a remedial method for collinearity in geographically weighted regression
    • Wheeler, D.C., 2007. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A, 39 (10), 2464–2481. doi:10.1068/a38325
    • (2007) Environment and Planning A , vol.39 , Issue.10 , pp. 2464-2481
    • Wheeler, D.C.1
  • 26
    • 66249126303 scopus 로고    scopus 로고
    • Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso
    • Wheeler, D.C., 2009. Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environment and Planning A, 41 (3), 722–742. doi:10.1068/a40256
    • (2009) Environment and Planning A , vol.41 , Issue.3 , pp. 722-742
    • Wheeler, D.C.1
  • 27
    • 85051255398 scopus 로고    scopus 로고
    • Single and multiscale models of process spatial heterogeneity
    • Wolf, L.J., Oshan, T.M., and Fotheringham, A.S., 2018. Single and multiscale models of process spatial heterogeneity. Geographical Analysis, 50 (3), 223–246. doi:10.1111/gean.v50.3
    • (2018) Geographical Analysis , vol.50 , Issue.3 , pp. 223-246
    • Wolf, L.J.1    Oshan, T.M.2    Fotheringham, A.S.3
  • 28
    • 84875667196 scopus 로고    scopus 로고
    • Parallelization of a hydrological model using the message passing interface
    • et al
    • Wu, Y., et al., 2013. Parallelization of a hydrological model using the message passing interface. Environmental Modelling & Software, 43, 124–132. doi:10.1016/j.envsoft.2013.02.002
    • (2013) Environmental Modelling & Software , vol.43 , pp. 124-132
    • Wu, Y.1
  • 29
    • 34447264457 scopus 로고    scopus 로고
    • Modeling owner-occupied single-family house values in the city of Milwaukee: a geographically weighted regression approach
    • Yu, D., 2007. Modeling owner-occupied single-family house values in the city of Milwaukee: a geographically weighted regression approach. GIScience & Remote Sensing, 44 (3), 267–282. doi:10.2747/1548-1603.44.3.267
    • (2007) GIScience & Remote Sensing , vol.44 , Issue.3 , pp. 267-282
    • Yu, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.