-
1
-
-
0037265126
-
Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression
-
et al
-
Atkinson, P.M., et al., 2003. Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis, 35 (1), 58–82. doi:10.1111/gean.2003.35.issue-1
-
(2003)
Geographical Analysis
, vol.35
, Issue.1
, pp. 58-82
-
-
Atkinson, P.M.1
-
3
-
-
84860385540
-
Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression
-
et al
-
Brown, S., et al., 2012. Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environmental Modeling & Assessment, 17 (3), 241–254. doi:10.1007/s10666-011-9289-8
-
(2012)
Environmental Modeling & Assessment
, vol.17
, Issue.3
, pp. 241-254
-
-
Brown, S.1
-
4
-
-
0030432956
-
Geographically weighted regression: a method for exploring spatial nonstationarity
-
Brunsdon, C., Fotheringham, A.S., and Charlton, M.E., 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28 (4), 281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
-
(1996)
Geographical Analysis
, vol.28
, Issue.4
, pp. 281-298
-
-
Brunsdon, C.1
Fotheringham, A.S.2
Charlton, M.E.3
-
5
-
-
34249703491
-
Using geographically weighted regression to explore local crime patterns
-
Cahill, M., and Mulligan, G., 2007. Using geographically weighted regression to explore local crime patterns. Social Science Computer Review, 25 (2), 174–193. doi:10.1177/0894439307298925
-
(2007)
Social Science Computer Review
, vol.25
, Issue.2
, pp. 174-193
-
-
Cahill, M.1
Mulligan, G.2
-
6
-
-
84858712087
-
Application of geographically weighted regression to the direct forecasting of transit ridership at station-level
-
Cardozo, O.D., García-Palomares, J.C., and Gutiérrez, J., 2012. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geography, 34, 548–558. doi:10.1016/j.apgeog.2012.01.005
-
(2012)
Applied Geography
, vol.34
, pp. 548-558
-
-
Cardozo, O.D.1
García-Palomares, J.C.2
Gutiérrez, J.3
-
7
-
-
84941299702
-
The multiple testing issue in geographically weighted regression
-
da Silva, A.R., and Fotheringham, A.S., 2016. The multiple testing issue in geographically weighted regression. Geographical Analysis, 48 (3), 233–247. doi:10.1111/gean.2016.48.issue-3
-
(2016)
Geographical Analysis
, vol.48
, Issue.3
, pp. 233-247
-
-
da Silva, A.R.1
Fotheringham, A.S.2
-
8
-
-
41449101853
-
MPI for Python: performance improvements and MPI-2 extensions
-
et al
-
Dalcín, L., et al., 2008. MPI for Python: performance improvements and MPI-2 extensions. Journal of Parallel and Distributed Computing, 68 (5), 655–662. doi:10.1016/j.jpdc.2007.09.005
-
(2008)
Journal of Parallel and Distributed Computing
, vol.68
, Issue.5
, pp. 655-662
-
-
Dalcín, L.1
-
9
-
-
85044135376
-
A massive geographically weighted regression model of walking-environment relationships
-
et al
-
Feuillet, T., et al., 2018. A massive geographically weighted regression model of walking-environment relationships. Journal of Transport Geography, 68, 118–129. doi:10.1016/j.jtrangeo.2018.03.002
-
(2018)
Journal of Transport Geography
, vol.68
, pp. 118-129
-
-
Feuillet, T.1
-
10
-
-
0038092455
-
-
John Wiley & Sons, and,. New York
-
Fotheringham, A.S., Brunsdon, C., and Charlton, M., 2002. Geographically weighted regression: the analysis of spatially varying relationships. New York: John Wiley & Sons.
-
(2002)
Geographically weighted regression: the analysis of spatially varying relationships
-
-
Fotheringham, A.S.1
Brunsdon, C.2
Charlton, M.3
-
11
-
-
0030468459
-
The geography of parameter space: an investigation into spatial non-stationarity
-
Fotheringham, A.S., Charlton, M.E., and Brunsdon, C., 1996. The geography of parameter space: an investigation into spatial non-stationarity. International Journal of Geographic Information Systems, 10, 605–627. doi:10.1080/026937996137909
-
(1996)
International Journal of Geographic Information Systems
, vol.10
, pp. 605-627
-
-
Fotheringham, A.S.1
Charlton, M.E.2
Brunsdon, C.3
-
12
-
-
84945465775
-
Geographical and temporal weighted regression (GTWR)
-
Fotheringham, A.S., Crespo, R., and Yao, J., 2015. Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47 (4), 431–452. doi:10.1111/gean.2015.47.issue-4
-
(2015)
Geographical Analysis
, vol.47
, Issue.4
, pp. 431-452
-
-
Fotheringham, A.S.1
Crespo, R.2
Yao, J.3
-
13
-
-
85028532966
-
Multiscale geographically weighted regression (MGWR)
-
Fotheringham, A.S., Yang, W., and Kang, W., 2017. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107 (6), 1247–1265. doi:10.1080/24694452.2017.1352480
-
(2017)
Annals of the American Association of Geographers
, vol.107
, Issue.6
, pp. 1247-1265
-
-
Fotheringham, A.S.1
Yang, W.2
Kang, W.3
-
14
-
-
35048884271
-
Open MPI: goals, concept, and design of a next generation MPI implementation
-
et al, : D. Kranzlmüller, P. Kacsuk, J. Dongarra, eds. , EuroPVM/MPI 2004,. Lecture Notes Computer Science, 3241. Berlin: Springer
-
Gabriel, E., et al. (2004). Open MPI: goals, concept, and design of a next generation MPI implementation. In: D. Kranzlmüller, P. Kacsuk, J. Dongarra, eds. Recent Advances in Parallel Virtual Machine and Message Passing Interface,EuroPVM/MPI 2004. Lecture Notes in Computer Science, 3241. Berlin: Springer.
-
(2004)
Recent Advances in Parallel Virtual Machine and Message Passing Interface
-
-
Gabriel, E.1
-
16
-
-
60649112018
-
Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR)
-
Griffith, D.A., 2008. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A, 40 (11), 2751–2769. doi:10.1068/a38218
-
(2008)
Environment and Planning A
, vol.40
, Issue.11
, pp. 2751-2769
-
-
Griffith, D.A.1
-
17
-
-
0030243005
-
A high-performance, portable implementation of the MPI message passing interface standard
-
et al
-
Gropp, W., et al., 1996. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22 (6), 789–828. doi:10.1016/0167-8191(96)00024-5
-
(1996)
Parallel Computing
, vol.22
, Issue.6
, pp. 789-828
-
-
Gropp, W.1
-
18
-
-
74949130472
-
Grid‐enabling geographically weighted regression: a case study of participation in higher education in England
-
et al
-
Harris, R., et al., 2010. Grid‐enabling geographically weighted regression: a case study of participation in higher education in England. Transactions in GIS, 14 (1), 43–61. doi:10.1111/tgis.2010.14.issue-1
-
(2010)
Transactions in GIS
, vol.14
, Issue.1
, pp. 43-61
-
-
Harris, R.1
-
19
-
-
2542431050
-
-
Advances Spatial Econometrics. Advances Spatial Science,. Berlin: Springer
-
McMillen D. P., McDonald, J. F., (2004). Locally Weighted Maximum Likelihood Estimation: Monte Carlo Evidence and an Application. In: L. Anselin, R. J. G. M. Florax, R. S.Jey, eds. Advances in Spatial Econometrics. Advances in Spatial Science. Berlin: Springer.
-
(2004)
Locally Weighted Maximum Likelihood Estimation: Monte Carlo Evidence and an Application. In: L. Anselin, R. J. G. M. Florax, R. S.Jey, eds
-
-
McMillen, D.P.1
McDonald, J.F.2
-
21
-
-
0037202442
-
Should data be partitioned spatially before building large-scale distribution models?
-
Osborne, P.E., and Suárez-Seoane, S., 2002. Should data be partitioned spatially before building large-scale distribution models? Ecological Modelling, 157 (2–3), 249–259. doi:10.1016/S0304-3800(02)00198-9
-
(2002)
Ecological Modelling
, vol.157
, Issue.2-3
, pp. 249-259
-
-
Osborne, P.E.1
Suárez-Seoane, S.2
-
22
-
-
84856478200
-
Scalable local regression for spatial analytics
-
ACM, and, : Divyakant Agrawal, Isabel Cruz, Christian S. Jensen, Eyal Ofek, and Egemen Tanin, eds., New York, NY, USA
-
Pozdnoukhov, A., and Kaiser, C., 2011. Scalable local regression for spatial analytics. In: Divyakant Agrawal, Isabel Cruz, Christian S. Jensen, Eyal Ofek, and Egemen Tanin, eds. Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS '11), ACM, New York, NY, USA, 361–364. doi:10.1145/2093973.2094023
-
(2011)
Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS '11)
, pp. 361-364
-
-
Pozdnoukhov, A.1
Kaiser, C.2
-
23
-
-
0036205377
-
TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing
-
et al
-
Schmidt, H.A., et al., 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18 (3), 502–504.
-
(2002)
Bioinformatics
, vol.18
, Issue.3
, pp. 502-504
-
-
Schmidt, H.A.1
-
24
-
-
85006977174
-
Large-scale geographically weighted regression on Spark
-
October, IEEE, and
-
Tran, H.T., Nguyen, H.T., and Tran, V.T., 2016. Large-scale geographically weighted regression on Spark. In: Knowledge and Systems Engineering (KSE), 2016 Eighth International Conference on, October. IEEE.,127–132. doi: 10.1177/1753193416669263
-
(2016)
Knowledge and Systems Engineering (KSE), 2016 Eighth International Conference on
, pp. 127-132
-
-
Tran, H.T.1
Nguyen, H.T.2
Tran, V.T.3
-
25
-
-
35648994302
-
Diagnostic tools and a remedial method for collinearity in geographically weighted regression
-
Wheeler, D.C., 2007. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A, 39 (10), 2464–2481. doi:10.1068/a38325
-
(2007)
Environment and Planning A
, vol.39
, Issue.10
, pp. 2464-2481
-
-
Wheeler, D.C.1
-
26
-
-
66249126303
-
Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso
-
Wheeler, D.C., 2009. Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environment and Planning A, 41 (3), 722–742. doi:10.1068/a40256
-
(2009)
Environment and Planning A
, vol.41
, Issue.3
, pp. 722-742
-
-
Wheeler, D.C.1
-
27
-
-
85051255398
-
Single and multiscale models of process spatial heterogeneity
-
Wolf, L.J., Oshan, T.M., and Fotheringham, A.S., 2018. Single and multiscale models of process spatial heterogeneity. Geographical Analysis, 50 (3), 223–246. doi:10.1111/gean.v50.3
-
(2018)
Geographical Analysis
, vol.50
, Issue.3
, pp. 223-246
-
-
Wolf, L.J.1
Oshan, T.M.2
Fotheringham, A.S.3
-
28
-
-
84875667196
-
Parallelization of a hydrological model using the message passing interface
-
et al
-
Wu, Y., et al., 2013. Parallelization of a hydrological model using the message passing interface. Environmental Modelling & Software, 43, 124–132. doi:10.1016/j.envsoft.2013.02.002
-
(2013)
Environmental Modelling & Software
, vol.43
, pp. 124-132
-
-
Wu, Y.1
-
29
-
-
34447264457
-
Modeling owner-occupied single-family house values in the city of Milwaukee: a geographically weighted regression approach
-
Yu, D., 2007. Modeling owner-occupied single-family house values in the city of Milwaukee: a geographically weighted regression approach. GIScience & Remote Sensing, 44 (3), 267–282. doi:10.2747/1548-1603.44.3.267
-
(2007)
GIScience & Remote Sensing
, vol.44
, Issue.3
, pp. 267-282
-
-
Yu, D.1
|