메뉴 건너뛰기




Volumn 47, Issue 3, 2020, Pages 489-507

Distance metric choice can both reduce and induce collinearity in geographically weighted regression

Author keywords

collinearity; distance metrics; Geographically weighted regression; model fit

Indexed keywords

HOUSING MARKET; LINEARITY; NUMERICAL MODEL; PRICE DYNAMICS; REGRESSION ANALYSIS;

EID: 85049921191     PISSN: 23998083     EISSN: 23998091     Source Type: Journal    
DOI: 10.1177/2399808318784017     Document Type: Article
Times cited : (21)

References (50)
  • 1
    • 0000501656 scopus 로고
    • Information Theory and an extension of the maximum likelihood principle
    • Petrov BN, Csaki F, Akademiai Kiado
    • Akaike H (1973) Information Theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd Symposium on Information Theory, Budapest: Akademiai Kiado, pp. 267–281.
    • (1973) 2Nd Symposium on Information Theory, Budapest , pp. 267-281
    • Akaike, H.1
  • 2
    • 0041530204 scopus 로고    scopus 로고
    • Space varying coefficient models for small area data
    • Assunção RM, (2003) Space varying coefficient models for small area data. Environmetrics 14: 453–473.
    • (2003) Environmetrics , vol.14 , pp. 453-473
    • Assunção, R.M.1
  • 3
    • 84919476299 scopus 로고    scopus 로고
    • Alleviating the effect of collinearity in geographically weighted regression
    • Barcena MJ, et al. (2014) Alleviating the effect of collinearity in geographically weighted regression. Journal of Geographical Systems 16(4): 441–466.
    • (2014) Journal of Geographical Systems , vol.16 , Issue.4 , pp. 441-466
    • Barcena, M.J.1
  • 5
    • 0001245944 scopus 로고
    • An alternative method of cross-validation for the smoothing of density estimates
    • Bowman AW, (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71(2): 353–360.
    • (1984) Biometrika , vol.71 , Issue.2 , pp. 353-360
    • Bowman, A.W.1
  • 7
    • 0000722130 scopus 로고    scopus 로고
    • Some notes on parametric significance tests for geographically weighted regression
    • Brunsdon C, Fotheringham AS, Charlton M, (1999) Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 39(3): 497–524.
    • (1999) Journal of Regional Science , vol.39 , Issue.3 , pp. 497-524
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.3
  • 8
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: A method for exploring spatial nonstationarity
    • Brunsdon C, Fotheringham AS, Charlton ME, (1996) Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis 28(4): 281–298.
    • (1996) Geographical Analysis , vol.28 , Issue.4 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 9
    • 84982770928 scopus 로고
    • Generating models by the expansion method: Applications to geographical research
    • Casetti E, (1972) Generating models by the expansion method: Applications to geographical research. Geographical Analysis 4(1): 81–91.
    • (1972) Geographical Analysis , vol.4 , Issue.1 , pp. 81-91
    • Casetti, E.1
  • 11
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland WS, (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368): 829–836.
    • (1979) Journal of the American Statistical Association , vol.74 , Issue.368 , pp. 829-836
    • Cleveland, W.S.1
  • 12
    • 84874725861 scopus 로고    scopus 로고
    • Collinearity: A review of methods to deal with it and a simulation study evaluating their performance
    • Dormann CF, et al. (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1): 27–46.
    • (2013) Ecography , vol.36 , Issue.1 , pp. 27-46
    • Dormann, C.F.1
  • 13
    • 85081711180 scopus 로고    scopus 로고
    • online, Available at, accessed 13 June 2018
    • ESRI (2009) ArcGIS 9.3: Interpreting GWR results [online]. Available at: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Interpreting_GWR_results (accessed 13 June 2018).
    • (2009) Arcgis 9.3: Interpreting GWR Results
  • 14
    • 35748982456 scopus 로고    scopus 로고
    • A systematic investigation of cross-validation in GWR model estimation: Empirical analysis and Monte Carlo simulations
    • Farber S, Páez A, (2007) A systematic investigation of cross-validation in GWR model estimation: Empirical analysis and Monte Carlo simulations. Journal of Geographical Systems 9(4): 371–396.
    • (2007) Journal of Geographical Systems , vol.9 , Issue.4 , pp. 371-396
    • Farber, S.1    Páez, A.2
  • 15
    • 84856105430 scopus 로고    scopus 로고
    • Comparing spatially-varying coefficient models for analysis of ecological data with non-stationary and anisotropic residual dependence
    • Finley AO, (2011) Comparing spatially-varying coefficient models for analysis of ecological data with non-stationary and anisotropic residual dependence. Ecology and Evolution 2: 143–154.
    • (2011) Ecology and Evolution , vol.2 , pp. 143-154
    • Finley, A.O.1
  • 18
    • 84945465775 scopus 로고    scopus 로고
    • Geographical and temporal weighted regression (GTWR)
    • Fotheringham AS, Crespo R, Yao J, (2015) Geographical and temporal weighted regression (GTWR). Geographical Analysis 47(4): 431–452.
    • (2015) Geographical Analysis , vol.47 , Issue.4 , pp. 431-452
    • Fotheringham, A.S.1    Crespo, R.2    Yao, J.3
  • 21
    • 84922560278 scopus 로고    scopus 로고
    • GWmodel: An R package for exploring spatial heterogeneity using geographically weighted models
    • Gollini I, et al. (2015) GWmodel: An R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistical Software 63(17): 1–50.
    • (2015) Journal of Statistical Software , vol.63 , Issue.17 , pp. 1-50
    • Gollini, I.1
  • 22
    • 28444486932 scopus 로고    scopus 로고
    • The validity and usefulness of laws in geographic information science and geography
    • Goodchild MF, (2004) The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers 94(2): 300–303.
    • (2004) Annals of the Association of American Geographers , vol.94 , Issue.2 , pp. 300-303
    • Goodchild, M.F.1
  • 23
    • 0003074252 scopus 로고
    • Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling
    • Gorr WL, Olligschlaeger AM, (1994) Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling. Geographical Analysis 26(1): 67–87.
    • (1994) Geographical Analysis , vol.26 , Issue.1 , pp. 67-87
    • Gorr, W.L.1    Olligschlaeger, A.M.2
  • 24
    • 60649112018 scopus 로고    scopus 로고
    • Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR)
    • Griffith DA, (2008) Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A 40(11): 2751–2769.
    • (2008) Environment and Planning A , vol.40 , Issue.11 , pp. 2751-2769
    • Griffith, D.A.1
  • 25
    • 78751617436 scopus 로고    scopus 로고
    • Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor
    • (, a
    • Harris P, Brunsdon C, Fotheringham AS, (2011a) Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor. Stochastic Environmental Research and Risk Assessment 25: 123–138.
    • (2011) Stochastic Environmental Research and Risk Assessment , vol.25 , pp. 123-138
    • Harris, P.1    Brunsdon, C.2    Fotheringham, A.S.3
  • 26
    • 77951287343 scopus 로고    scopus 로고
    • Robust geographically weighed regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes
    • Harris P, Fotheringham AS, Juggins S, (2010) Robust geographically weighed regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Annals of the Association of American Geographers 100(2): 286–306.
    • (2010) Annals of the Association of American Geographers , vol.100 , Issue.2 , pp. 286-306
    • Harris, P.1    Fotheringham, A.S.2    Juggins, S.3
  • 28
    • 0002161961 scopus 로고
    • Application of ridge analysis to regression problems
    • Hoerl AE, (1962) Application of ridge analysis to regression problems. Chemical Engineering Progress 58(3): 54–59.
    • (1962) Chemical Engineering Progress , vol.58 , Issue.3 , pp. 54-59
    • Hoerl, A.E.1
  • 29
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW, (1970) Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1): 55–67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 30
    • 84894273575 scopus 로고    scopus 로고
    • Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data
    • (, a
    • Lu B, et al. (2014a) Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science 28(4): 660–681.
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.4 , pp. 660-681
    • Lu, B.1
  • 31
    • 84901651260 scopus 로고    scopus 로고
    • The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models
    • (, b
    • Lu B, et al. (2014b) The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science 17(2): 85–101.
    • (2014) Geo-Spatial Information Science , vol.17 , Issue.2 , pp. 85-101
    • Lu, B.1
  • 32
    • 85008513895 scopus 로고    scopus 로고
    • Calibrating a geographically weighted regression model with parameter-specific distance metrics
    • Lu B, et al. (2015) Calibrating a geographically weighted regression model with parameter-specific distance metrics. Procedia Environmental Sciences 26: 109–114.
    • (2015) Procedia Environmental Sciences , vol.26 , pp. 109-114
    • Lu, B.1
  • 33
    • 84948075260 scopus 로고    scopus 로고
    • The Minkowski approach for choosing the distance metric in Geographically Weighted Regression
    • Lu B, et al. (2016) The Minkowski approach for choosing the distance metric in Geographically Weighted Regression. International Journal of Geographical Information Science 30(2): 351–368.
    • (2016) International Journal of Geographical Information Science , vol.30 , Issue.2 , pp. 351-368
    • Lu, B.1
  • 34
    • 84999635796 scopus 로고    scopus 로고
    • Geographically weighted regression with parameter-specific distance metrics
    • (, a
    • Lu B, et al. (2017a) Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science 31(5): 982–998.
    • (2017) International Journal of Geographical Information Science , vol.31 , Issue.5 , pp. 982-998
    • Lu, B.1
  • 36
    • 0036235658 scopus 로고    scopus 로고
    • Crucial problems in regression modelling and their solutions
    • Meloun M, et al. (2002) Crucial problems in regression modelling and their solutions. Analyst 127(4): 433–450.
    • (2002) Analyst , vol.127 , Issue.4 , pp. 433-450
    • Meloun, M.1
  • 37
    • 85008430247 scopus 로고    scopus 로고
    • A Moran coefficient-based mixed effects approach to investigate spatially varying relationships
    • Murakami D, Yoshida T, Seya H, et al. (2017) A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics 19: 68–89.
    • (2017) Spatial Statistics , vol.19 , pp. 68-89
    • Murakami, D.1    Yoshida, T.2    Seya, H.3
  • 38
    • 24944468295 scopus 로고    scopus 로고
    • Geographically weighted Poisson regression for disease association mapping
    • and
    • Nakaya T, Fotheringham AS, Brunsdon C and Charlton M (2005) Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine 24(17): 2695–2717.
    • (2005) Statistics in Medicine , vol.24 , Issue.17 , pp. 2695-2717
    • Nakaya, T.1    Fotheringham, A.S.2    Brunsdon, C.3    Charlton, M.4
  • 39
    • 0002499229 scopus 로고    scopus 로고
    • Developing GIS-relevant zone-based spatial analysis methods
    • Longley P., Batty M., (eds), New York, John Wiley and Sons, In:, (eds
    • Openshaw S, (1996) Developing GIS-relevant zone-based spatial analysis methods. In: Longley P, Batty M, (eds) Spatial Analysis: Modelling in a GIS Environment, New York: John Wiley and Sons, pp. 55–73.
    • (1996) Spatial Analysis: Modelling in a GIS Environment , pp. 55-73
    • Openshaw, S.1
  • 40
    • 10244255200 scopus 로고    scopus 로고
    • Anisotropic variance functions in geographically weighted regression models
    • Páez A, (2004) Anisotropic variance functions in geographically weighted regression models. Geographical Analysis 36(4): 299–314.
    • (2004) Geographical Analysis , vol.36 , Issue.4 , pp. 299-314
    • Páez, A.1
  • 41
    • 0036257201 scopus 로고    scopus 로고
    • A general framework for estimation and inference of geographically weighted regression models: 1. Location-specific kernel bandwidths and a test for locational heterogeneity
    • (, a
    • Páez A, Uchida T, Miyamoto K, (2002a) A general framework for estimation and inference of geographically weighted regression models: 1. Location-specific kernel bandwidths and a test for locational heterogeneity. Environment and Planning A 34(4): 733–754.
    • (2002) Environment and Planning A , vol.34 , Issue.4 , pp. 733-754
    • Páez, A.1    Uchida, T.2    Miyamoto, K.3
  • 42
    • 0036257023 scopus 로고    scopus 로고
    • A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification tests
    • (, b
    • Páez A, Uchida T, Miyamoto K, (2002b) A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification tests. Environment and Planning A 34(5): 883–904.
    • (2002) Environment and Planning A , vol.34 , Issue.5 , pp. 883-904
    • Páez, A.1    Uchida, T.2    Miyamoto, K.3
  • 44
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the detroit region
    • Tobler WR, (1970) A computer movie simulating urban growth in the detroit region. Economic Geography 46(2): 234–240.
    • (1970) Economic Geography , vol.46 , Issue.2 , pp. 234-240
    • Tobler, W.R.1
  • 45
    • 21244497275 scopus 로고    scopus 로고
    • Multicollinearity and correlation among local regression coefficients in geographically weighted regression
    • Wheeler D, Tiefelsdorf M, (2005) Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems 7(2): 161–187.
    • (2005) Journal of Geographical Systems , vol.7 , Issue.2 , pp. 161-187
    • Wheeler, D.1    Tiefelsdorf, M.2
  • 46
    • 35648994302 scopus 로고    scopus 로고
    • Diagnostic tools and a remedial method for collinearity in geographically weighted regression
    • Wheeler DC, (2007) Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A 39(10): 2464–2481.
    • (2007) Environment and Planning A , vol.39 , Issue.10 , pp. 2464-2481
    • Wheeler, D.C.1
  • 47
    • 66249126303 scopus 로고    scopus 로고
    • Simultaneous coefficient penalization and model selection in geographically weighted regression: The geographically weighted lasso
    • Wheeler DC, (2009) Simultaneous coefficient penalization and model selection in geographically weighted regression: The geographically weighted lasso. Environment and Planning A 41(3): 722–742.
    • (2009) Environment and Planning A , vol.41 , Issue.3 , pp. 722-742
    • Wheeler, D.C.1
  • 48
    • 85103878007 scopus 로고    scopus 로고
    • Visualizing and diagnosing coefficients from geographically weighted regression models
    • Jiang B., Yao X., (eds), Netherlands, Springer, In:, (eds
    • Wheeler DC, (2010) Visualizing and diagnosing coefficients from geographically weighted regression models. In: Jiang B, Yao X, (eds) Geospatial Analysis and Modelling of Urban Structure and Dynamics, Netherlands: Springer, pp. 415–436.
    • (2010) Geospatial Analysis and Modelling of Urban Structure and Dynamics , pp. 415-436
    • Wheeler, D.C.1
  • 49
    • 84971229255 scopus 로고    scopus 로고
    • New algorithm for constructing area-based index with geographical heterogeneities and variable selection
    • accessed 13 June 2018
    • Yoneoka D, Saito E and Nakaoka S (2016) New algorithm for constructing area-based index with geographical heterogeneities and variable selection: An application to gastric cancer screening. Scientific Reports 6. Available at: www.ncbi.nlm.nih.gov/pmc/articles/PMC4877577/ (accessed 13 June 2018).
    • (2016) Application to Gastric Cancer Screening. Scientific Reports , pp. 6
    • Yoneoka, D.1    Saito, E.2    Nakaoka, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.