메뉴 건너뛰기




Volumn 7, Issue 5, 2011, Pages 800-820

Feature selection for high dimensional data: An evolutionary filter approach

Author keywords

Evaluation function; Feature selection; Filter approach; Genetic algorithm; High dimensional data; Machine Learning (ML); Mutation operator; Natural language processing; Proposed approach; Search algorithm

Indexed keywords


EID: 80053080403     PISSN: 15493636     EISSN: None     Source Type: Journal    
DOI: 10.3844/jcssp.2011.800.820     Document Type: Article
Times cited : (29)

References (94)
  • 4
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • DOI: 10.1016/J.PATREC.2005.07.009
    • Arbor, A., J.H. Michigan, S.B. Hong and S.B. Cho, 2006. Efficient huge-scale feature selection with speciated genetic algorithm. Patt. Recogn. Lett. 27: 143-150. DOI: 10.1016/J.PATREC.2005.07.009
    • (2006) Patt. Recogn. Lett. , vol.27 , pp. 143-150
    • Arbor, A.1    Michigan, J.H.2    Hong, S.B.3    Cho, S.B.4
  • 5
    • 0003586486 scopus 로고
    • 1st Edn., Harvard University Press, Boston
    • Austin, J.L., 1962. How to do Things with Words. 1st Edn., Harvard University Press, Boston, pp: 166.
    • (1962) How to do Things with Words , pp. 166
    • Austin, J.L.1
  • 7
    • 0001500753 scopus 로고
    • Classification Pattern Recognition and Reduction of Dimensionality
    • Krishnaiah, P.R. and L.N. Kanal (Eds.). North-Holland Pub. Co., Amsterdam, ISBN: 044486217X
    • Ben-Bassat, M., 1982. Classification Pattern Recognition and Reduction of Dimensionality. Handbook of statistics 2: Classification, Pattern Recognition and Reduction of Dimensionality, Krishnaiah, P.R. and L.N. Kanal (Eds.). North-Holland Pub. Co., Amsterdam, pp: 773-791. ISBN: 044486217X
    • (1982) Handbook of statistics 2: Classification, Pattern Recognition and Reduction of Dimensionality , pp. 773-791
    • Ben-Bassat, M.1
  • 8
    • 70849100216 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A kolmogorov-smirnov correlation-based filter
    • DOI: 10.1007/3-540-32390-2_9
    • Biesiada, J. and W. Duch, 2005. Feature selection for high-dimensional data: A kolmogorov-smirnov correlation-based filter. Comput. Recogn. Syst., 30: 95-103. DOI: 10.1007/3-540-32390-2_9
    • (2005) Comput. Recogn. Syst. , vol.30 , pp. 95-103
    • Biesiada, J.1    Duch, W.2
  • 9
    • 0034856599 scopus 로고    scopus 로고
    • Feature selection from huge feature sets
    • July, 7-14, IEEE Xplore Press, Vancouver, BC, Canada, DOI: 10.1109/ICCV.2001.937619
    • Bins, J. and B.A. Draper, 2001. Feature selection from huge feature sets. Proceedings of the 8th International Conferences Computer Vision, July, 7-14, IEEE Xplore Press, Vancouver, BC, Canada, pp: 159-165. DOI: 10.1109/ICCV.2001.937619
    • (2001) Proceedings of the 8th International Conferences Computer Vision , pp. 159-165
    • Bins, J.1    Draper, B.A.2
  • 10
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • DOI: 10.1016/S0004-3702(97)00063-5
    • Blum, A. and P. Langley, 1997. Selection of relevant features and examples in machine learning. Art. Intell. 97: 245-271. DOI: 10.1016/S0004-3702(97)00063-5
    • (1997) Art. Intell. , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 11
    • 0039951159 scopus 로고
    • Context and dialogue control
    • Bunt, H., 1994. Context and dialogue control. Think, 3: 19-31. http://citeseer.ist.psu.edu/viewdoc/summary?doi= 10.1.1.39.1926
    • (1994) Think , vol.3 , pp. 19-31
    • Bunt, H.1
  • 13
    • 27144519762 scopus 로고    scopus 로고
    • Feature subset selection, class separability and genetic algorithms
    • DOI: 10.1007/978-3-540-24854-5_96
    • Cantu-Paz, E., 2004. Feature subset selection, class separability and genetic algorithms. Genetic Evol. Comput. 3102: 959-970. DOI: 10.1007/978-3-540-24854-5_96
    • (2004) Genetic Evol. Comput. , vol.3102 , pp. 959-970
    • Cantu-Paz, E.1
  • 14
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid for feature selection
    • Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
    • Das, S., 2001. Filters, wrappers and a boosting-based hybrid for feature selection. Proceedings of the 18th International Conference on Machine Learning, (ICML'01) Morgan Kaufmann Publishers Inc. San Francisco, CA, USA., pp: 74-81. http://portal.acm.org/citation.cfm?id=658297
    • (2001) Proceedings of the 18th International Conference on Machine Learning, (ICML'01) , pp. 74-81
    • Das, S.1
  • 15
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classifications: Intelligent data analysis
    • DOI: 10.1016/S1088-467x(97)00008-5
    • Dash, M. and H. Liu, 1997. Feature selection for classifications: Intelligent data analysis. Int. J., 1: 131-156. DOI: 10.1016/S1088-467x(97)00008-5
    • (1997) Int. J. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 16
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • DOI: 10.1016/S0004-3702(03)00079-1
    • Dash, M. and H. Liu, 2003. Consistency-based search in feature selection. Art. Intell., 151: 155-176. DOI: 10.1016/S0004-3702(03)00079-1
    • (2003) Art. Intell. , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 17
    • 0001109062 scopus 로고
    • A Genetic Algorithm Applied to Robot Trajectory Generation
    • Davis, L. (Eds.). Van Nostr and Reinhold, New York. ISBN: 0442001738
    • Davidor, Y., 1991a. A Genetic Algorithm Applied to Robot Trajectory Generation. In: Handbook of Genetic Algorithms, Davis, L. (Eds.). Van Nostr and Reinhold, New York, pp: 144-165. ISBN: 0442001738
    • (1991) Handbook of Genetic Algorithms , pp. 144-165
    • Davidor, Y.1
  • 19
    • 34047182490 scopus 로고    scopus 로고
    • Filter Methods
    • Guyon, I., S. Gunn, M. Nikravesh and L.A. Zadeh (Eds.). Springer, Berlin, Heidelberg, New York. ISBN: 10: 3540354875
    • Duch, W., 2006. Filter Methods. In: Feature Extraction, Foundations and Applications, Guyon, I., S. Gunn, M. Nikravesh and L.A. Zadeh (Eds.). Springer, Berlin, Heidelberg, New York, pp: 89-117. ISBN: 10: 3540354875
    • (2006) Feature Extraction, Foundations and Applications , pp. 89-117
    • Duch, W.1
  • 21
    • 34249003928 scopus 로고    scopus 로고
    • Application of a hybrid wavelet feature selection method in the design of a self-paced brain interface system
    • DOI: 10.1186/1743-0003-4-11
    • Fatourechi, M., G.E. Birch and R.K. Ward, 2007. Application of a hybrid wavelet feature selection method in the design of a self-paced brain interface system. J. Neuro. Eng. Rehabilit., 4: 1-11. DOI: 10.1186/1743-0003-4-11
    • (2007) J. Neuro. Eng. Rehabilit. , vol.4 , pp. 1-11
    • Fatourechi, M.1    Birch, G.E.2    Ward, R.K.3
  • 22
    • 80053078841 scopus 로고    scopus 로고
    • Machine learning techniques in dialogue act recognition
    • Fishel, M., 2007. Machine learning techniques in dialogue act recognition. Estonian Science Foundation. http://math.ut.ee/~fishel/doc/publ/darec.ery07.pdf
    • (2007) Estonian Science Foundation
    • Fishel, M.1
  • 24
    • 33749863915 scopus 로고    scopus 로고
    • Feature selection for support vector machines using genetic algorithms
    • DOI:10.1142/S0218213004001818
    • Frohlich, H., O. Chapelle and B. Scho{double acute}lkopf, 2004. Feature selection for support vector machines using genetic algorithms. Int. J. Art. Intell. Tools, 13: 791-800. doi:10.1142/S0218213004001818
    • (2004) Int. J. Art. Intell. Tools , vol.13 , pp. 791-800
    • Frohlich, H.1    Chapelle, O.2    Scholkopf, B.3
  • 25
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • DOI: 10.1016/J.PATCOG.2009.06.009
    • Gheyas, I.A. and L.S. Smith, 2010. Feature subset selection in large dimensionality domains. Patt. Recogn., 43: 5-13. DOI: 10.1016/J.PATCOG.2009.06.009
    • (2010) Patt. Recogn. , vol.43 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 27
    • 0000129072 scopus 로고
    • Messy genetic algorithms revisited: Studiesin in mixed size and scale
    • Goldberg, D.E., K. Deb and B. Korb, 1990. Messy genetic algorithms revisited: Studiesin in mixed size and scale. Complex Syst., 4: 415-444. http://www.complex-systems.com/pdf/04-4-4.pdf
    • (1990) Complex Syst. , vol.4 , pp. 415-444
    • Goldberg, D.E.1    Deb, K.2    Korb, B.3
  • 28
    • 38349181507 scopus 로고    scopus 로고
    • A fast separability-based feature selection method for high-dimensional remotely-sensed image classification
    • DOI: 10.1016/J.PATCOG.2007.11.007
    • Guo, B., R. I. Damper, S. R. Gunn and J. D. B. Nelson, 2008. A fast separability-based feature selection method for high-dimensional remotely-sensed image classification. Patt. Recogn., 41: 1653-1662. DOI: 10.1016/J.PATCOG.2007.11.007
    • (2008) Patt. Recogn. , vol.41 , pp. 1653-1662
    • Guo, B.1    Damper, R.I.2    Gunn, S.R.3    Nelson, J.D.B.4
  • 30
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning
    • Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
    • Hall, M.A., 2000. Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning. Proceeding of the 17th International Conferences on Machine Learning, (ICML'00), Morgan Kaufmann Publishers Inc. San Francisco, CA, USA., pp: 359-366. http://portal.acm.org/citation.cfm?id=657793
    • (2000) Proceeding of the 17th International Conferences on Machine Learning, (ICML'00) , pp. 359-366
    • Hall, M.A.1
  • 31
    • 0011714199 scopus 로고
    • D. Phil. Thesis, School of Cognitive and Computing Sciences, University of Sussex
    • Harvey, I., 1995. The artificial evolution of adaptive behaviour. D. Phil. Thesis, School of Cognitive and Computing Sciences, University of Sussex.
    • (1995) The artificial evolution of adaptive behaviour
    • Harvey, I.1
  • 33
  • 34
    • 85050833156 scopus 로고
    • Empirical studies on the disambiguation of cue phrases
    • Hirschberg, J. and D. Litman, 1993. Empirical studies on the disambiguation of cue phrases. Comput. Linguist., 19: 501-530. http://portal.acm.org/citation.cfm?id=972490
    • (1993) Comput. Linguist. , vol.19 , pp. 501-530
    • Hirschberg, J.1    Litman, D.2
  • 36
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • DOI: 10.1016/J.PATREC.2005.07.009
    • Hong, J.H. and S.B. Cho, 2006. Efficient huge-scale feature selection with speciated genetic algorithm. Patt. Recogn. Lett., 27: 143-150. DOI: 10.1016/J.PATREC.2005.07.009
    • (2006) Patt. Recogn. Lett. , vol.27 , pp. 143-150
    • Hong, J.H.1    Cho, S.B.2
  • 37
    • 85099325734 scopus 로고
    • Irrelevant Feature and the Subset Selection Problem
    • Morgan Kaufmann Publishers, San Francisco, CA
    • John, G.H., R. Kohavi and K. Pfleger, 1994. Irrelevant Feature and the Subset Selection Problem. Proceeding of the 11th International Conference on Machine Learning, Morgan Kaufmann Publishers, San Francisco, CA., pp: 121-129. http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.99.6141&rep=rep1&type=pdf
    • (1994) Proceeding of the 11th International Conference on Machine Learning , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 38
    • 84948950880 scopus 로고    scopus 로고
    • Pragmatics and Computational Linguistics
    • Horn, L. and G. Ward (Eds.). Wiley-Blackwell, Malden, MA. ISBN: 10: 0631225471
    • Jurafsky, D., 2004. Pragmatics and Computational Linguistics, In: Handbook of Pragmatics, Horn, L. and G. Ward (Eds.). Wiley-Blackwell, Malden, MA., pp: 578-604. ISBN: 10: 0631225471
    • (2004) Handbook of Pragmatics , pp. 578-604
    • Jurafsky, D.1
  • 41
    • 36348986082 scopus 로고    scopus 로고
    • Dialogue act recognition under uncertainty using bayesian networks
    • DOI: 10.1017/S1351324905004067
    • Keizer, S. and R. op den Akker, 2007. Dialogue act recognition under uncertainty using bayesian networks. Nat. Language Eng., 13: 287-316. DOI: 10.1017/S1351324905004067
    • (2007) Nat. Language Eng. , vol.13 , pp. 287-316
    • Keizer, S.1    op den Akker, R.2
  • 42
    • 0001577032 scopus 로고
    • Hybridising the Genetic Algorithm and the K Nearest Neighbors Classification Algorithm
    • Kelly, J.D. and L. Davis, 1991. Hybridising the Genetic Algorithm and the K Nearest Neighbors Classification Algorithm. In ICGA, pp: 377-383.
    • (1991) ICGA , pp. 377-383
    • Kelly, J.D.1    Davis, L.2
  • 44
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • DOI: 10.1016/S0004-3702(97)00043-X
    • Kohavi, R. and G. John, 1997. Wrappers for feature subset selection. Art. Intell., 97: 273-324. DOI: 10.1016/S0004-3702(97)00043-X
    • (1997) Art. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 46
    • 34047125755 scopus 로고    scopus 로고
    • Embedded Methods
    • Guyon, I., S. Gunn, M. Nikravesh and L.A. Zadeh (Eds.). Springer, Berlin, Germany. ISBN: 10: 3540354875
    • Lal, T.N., O. Chapelle, J. Weston and A. Elisseeff, 2006. Embedded Methods. In: Feature Extraction: Foundations and Applications, Guyon, I., S. Gunn, M. Nikravesh and L.A. Zadeh (Eds.). Springer, Berlin, Germany, pp: 137-165. ISBN: 10: 3540354875
    • (2006) Feature Extraction: Foundations and Applications , pp. 137-165
    • Lal, T.N.1    Chapelle, O.2    Weston, J.3    Elisseeff, A.4
  • 47
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • AAAI Press, USA
    • Langley, P., 1994. Selection of relevant features in machine learning. Proceedings of the AAAI Fall Symposium Relevance, (FSR'94), AAAI Press, USA., pp: 140-144.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.9852
    • (1994) Proceedings of the AAAI Fall Symposium Relevance, (FSR'94) , pp. 140-144
    • Langley, P.1
  • 48
    • 0030704138 scopus 로고    scopus 로고
    • Fast feature selection with genetic algorithms: A filter approach
    • Apr. 13-16, IEEE Xplore Press, Indianapolis, IN., USA DOI: 10.1109/ICEC.1997.592369
    • Lanzi, P., 1997. Fast feature selection with genetic algorithms: A filter approach. Proceedings of IEEE International Conference on Evolutionary Computation, Apr. 13-16, IEEE Xplore Press, Indianapolis, IN., USA., pp: 537-540. DOI: 10.1109/ICEC.1997.592369
    • (1997) Proceedings of IEEE International Conference on Evolutionary Computation , pp. 537-540
    • Lanzi, P.1
  • 49
    • 33750623605 scopus 로고    scopus 로고
    • An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data
    • PMCID: PMC2675488
    • Lecocke, M. and K. Hess, 2007. An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data. Can. Inf., 2: 313-327. PMCID: PMC2675488
    • (2007) Can. Inf. , vol.2 , pp. 313-327
    • Lecocke, M.1    Hess, K.2
  • 50
    • 77957929039 scopus 로고    scopus 로고
    • Image segmentation algorithms based on the machine learning of features
    • DOI: 10.1016/j.patrec.2010.07.004
    • Lee, S.H., H.I. Koo and N.I. Cho, 2010. Image segmentation algorithms based on the machine learning of features. Patt. Recogn. Lett, 31: 2325-2336. DOI: 10.1016/j.patrec.2010.07.004
    • (2010) Patt. Recogn. Lett , vol.31 , pp. 2325-2336
    • Lee, S.H.1    Koo, H.I.2    Cho, N.I.3
  • 52
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • DOI: 10.1093/BIOINFORMATICS/17.12.1131
    • Li, L., C.R. Weinberg, T.A. Darden and L.G. Pedersen, 2001. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 17: 1131-1142. DOI: 10.1093/BIOINFORMATICS/17.12.1131
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 53
    • 6344287425 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data using two-level filter
    • Aug. 26-29, IEEE Xplore Press, USA, DOI: 10.1109/ICMLC.2004.1382051
    • Li, Y., Z. F. Wu and J. M. Liu, 2004. Feature selection for high-dimensional data using two-level filter. Proceedings of the third International Conference on Machine Learning and Cybernetics, Aug. 26-29, IEEE Xplore Press, USA., pp: 1711-1716. DOI: 10.1109/ICMLC.2004.1382051
    • (2004) Proceedings of the third International Conference on Machine Learning and Cybernetics , pp. 1711-1716
    • Li, Y.1    Wu, Z.F.2    Liu, J.M.3
  • 55
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI: 10.1109/TKDE.2005.66
    • Liu, H. and L. Yu, 2005. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowledge Data Eng., 17: 491-502. DOI: 10.1109/TKDE.2005.66
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 56
    • 0029547432 scopus 로고
    • Selecting features with genetic algorithm in handwritten digit recognition
    • Nov. 29-1 Dec., IEEE Xplore Press, Perth, WA, Australia, DOI: 10.1109/ICEC.1995.489180
    • Liu, W., M. Wang and Y. Zhong, 1995. Selecting features with genetic algorithm in handwritten digit recognition. Proceedings of the International IEEE Conference on Evolutionary Computation, Nov. 29-1 Dec., IEEE Xplore Press, Perth, WA, Australia, pp: 396-399. DOI: 10.1109/ICEC.1995.489180
    • (1995) Proceedings of the International IEEE Conference on Evolutionary Computation , pp. 396-399
    • Liu, W.1    Wang, M.2    Zhong, Y.3
  • 57
    • 54949147680 scopus 로고    scopus 로고
    • Feature selection based-on genetic algorithm for image annotation
    • DOI: 10.1016/J.KNOSYS.2008.03.051
    • Lu, J., T. Zhao and Y. Zhang, 2008. Feature selection based-on genetic algorithm for image annotation. Knowledge-Based Syst., 21: 887-891. DOI: 10.1016/J.KNOSYS.2008.03.051
    • (2008) Knowledge-Based Syst. , vol.21 , pp. 887-891
    • Lu, J.1    Zhao, T.2    Zhang, Y.3
  • 58
    • 0005201713 scopus 로고    scopus 로고
    • Technical Report LSI-00-45-R, Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya
    • Marquez, L., 2000. Machine Learning and Natural Language Processing. Technical Report LSI-00-45-R, Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya.
    • (2000) Machine Learning and Natural Language Processing
    • Marquez, L.1
  • 60
    • 79955098161 scopus 로고    scopus 로고
    • Evolutionary feature selection for text documents using the SVM
    • Morariu, D.I., L.N. Vintan and V. Tresp, 2006. Evolutionary feature selection for text documents using the SVM. Proc. Worl Acad. Sci. Tech., 15: 215-221. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.8408&rep=rep1&type=pdf
    • (2006) Proc. Worl Acad. Sci. Tech. , vol.15 , pp. 215-221
    • Morariu, D.I.1    Vintan, L.N.2    Tresp, V.3
  • 61
    • 80053076126 scopus 로고    scopus 로고
    • On the scalability of genetic algorithms to very large-scale feature selection
    • DOI: 10.1007/3-540-45561-2_8
    • Moser, A. and M.N. Murty, 2000. On the scalability of genetic algorithms to very large-scale feature selection. Real-World Appl. Evolut. Comput., 1803: 309-311. DOI: 10.1007/3-540-45561-2_8
    • (2000) Real-World Appl. Evolut. Comput. , vol.1803 , pp. 309-311
    • Moser, A.1    Murty, M.N.2
  • 62
    • 84952774494 scopus 로고    scopus 로고
    • Feature selection for in-silico drug design using genetic algorithms and neural networks
    • June 25-27, IEEE Xplore Press, Blacksburg, VA, USA. 10.1109/SMCIA.2001.936728
    • Ozdemir, M., M.J. Embrechts, F. Arciniegas, C.M. Breneman and L. Lockwood et al., 2001. Feature selection for in-silico drug design using genetic algorithms and neural networks. IEEE Mountain Workshop on Soft Computing in Industrial Applications, June 25-27, IEEE Xplore Press, Blacksburg, VA, USA., pp: 53-57. 10.1109/SMCIA.2001.936728
    • (2001) IEEE Mountain Workshop on Soft Computing in Industrial Applications , pp. 53-57
    • Ozdemir, M.1    Embrechts, M.J.2    Arciniegas, F.3    Breneman, C.M.4    Lockwood, L.5
  • 63
  • 64
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI: 10.1093/bioinformatics/btm344
    • Saeys, Y., I. Inza and P. Larraaga, 2007. A review of feature selection techniques in bioinformatics. Bioinformatics, 23: 2507-2517. DOI: 10.1093/bioinformatics/btm344
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larraaga, P.3
  • 65
    • 80053074478 scopus 로고    scopus 로고
    • Image processing and machine learning for fully automated probabilistic evaluation of medical images
    • DOI: 10.1016/J.CMPB.2010.06.021
    • Sajn, L. and M. Kukar, 2010. Image processing and machine learning for fully automated probabilistic evaluation of medical images. Comput. Methods Programs Biomed., DOI: 10.1016/J.CMPB.2010.06.021
    • (2010) Comput. Methods Programs Biomed.
    • Sajn, L.1    Kukar, M.2
  • 68
    • 80053066107 scopus 로고    scopus 로고
    • Other Operators. Gene Duplication and Deletion
    • Bck, T., Z. Fogel and D.B. Michalewicz, Hrsg (Eds.). Institute of Physics Publishing, New York, ISBN: 0750303921
    • Schtz, M., 1997. Other Operators. Gene Duplication and Deletion. In: Handbook of Evolutionary Computation C3, Bck, T., Z. Fogel and D.B. Michalewicz, Hrsg (Eds.). Institute of Physics Publishing, New York, pp: 8-15. ISBN: 0750303921
    • (1997) Handbook of Evolutionary Computation C3 , pp. 8-15
    • Schtz, M.1
  • 69
    • 0001547494 scopus 로고
    • A Taxonomy of Illocutionary Acts
    • Gunderson, K. (Eds.). U of Minnesota Press, Minnesota, ISBN: 0816657793
    • Searle, J.R., 1975. A Taxonomy of Illocutionary Acts. In: Language, Mind and Knowledge, Minnesota Studies in the Philosophy of Science, Gunderson, K. (Eds.). U of Minnesota Press, Minnesota, pp: 344-369. ISBN: 0816657793
    • (1975) Language, Mind and Knowledge, Minnesota Studies in the Philosophy of Science , pp. 344-369
    • Searle, J.R.1
  • 70
    • 69149109819 scopus 로고    scopus 로고
    • A novel ACOGA hybrid algorithm for feature selection in protein function prediction
    • DOI: 10.1016/J.ESWA.2009.04.023
    • Shahla, N., M.E. Basiri, N. Ghasem-Aghaee and M.H. Aghdam, 2009. A novel ACOGA hybrid algorithm for feature selection in protein function prediction. Expert Syst. Appl., 36:12086-12094 DOI: 10.1016/J.ESWA.2009.04.023
    • (2009) Expert Syst. Appl. , vol.36 , pp. 12086-12094
    • Shahla, N.1    Basiri, M.E.2    Ghasem-Aghaee, N.3    Aghdam, M.H.4
  • 71
    • 0000962703 scopus 로고
    • On automatic feature selection
    • DOI: 10.1142/S0218001488000145
    • Siedlecki, W. and J. Sklansky, 1988. On automatic feature selection. Int. J. Patt. Recog. Art. Intell., 2: 197-220. DOI: 10.1142/S0218001488000145
    • (1988) Int. J. Patt. Recog. Art. Intell. , vol.2 , pp. 197-220
    • Siedlecki, W.1    Sklansky, J.2
  • 72
    • 22944482796 scopus 로고    scopus 로고
    • Automatic text summarization with genetic algorithm-based attribute selection
    • DOI: 10.1007/978-3-540-30498-2_31
    • Silla, C.N., G.L. Pappa, A.A. Freitas and C.A.A. Kaestner, 2004. Automatic text summarization with genetic algorithm-based attribute selection. Adv. Art. Intell. IBERAMIA, 3315: 305-314. DOI: 10.1007/978-3-540-30498-2_31
    • (2004) Adv. Art. Intell. IBERAMIA , vol.3315 , pp. 305-314
    • Silla, C.N.1    Pappa, G.L.2    Freitas, A.A.3    Kaestner, C.A.A.4
  • 73
    • 0003588857 scopus 로고
    • Doctoral Dissertation Thesis. University of Pittsburgh Pittsburgh, PA, USA
    • Smith, S.F., 1980. A learning system based on genetic adaptive algorithms. Doctoral Dissertation Thesis. University of Pittsburgh Pittsburgh, PA, USA. http://portal.acm.org/citation.cfm?id=909835
    • (1980) A learning system based on genetic adaptive algorithms
    • Smith, S.F.1
  • 74
    • 67349141395 scopus 로고    scopus 로고
    • Combining lexical, syntactic and prosodic cues for improved online dialog act tagging
    • DOI: 10.1016/j.csl.2008.12.001
    • Sridhar, V.K.R., S. Bangalore and S. Narayanan, 2009. Combining lexical, syntactic and prosodic cues for improved online dialog act tagging. Comput. Speech Language, 23: 407422. DOI: 10.1016/j.csl.2008.12.001
    • (2009) Comput. Speech Language , vol.23 , pp. 407-422
    • Sridhar, V.K.R.1    Bangalore, S.2    Narayanan, S.3
  • 75
    • 85027109147 scopus 로고
    • Genetic algorithms as a tool for feature selection in machine learning
    • Nov. 10-13, Arlington, VA. USA. DOI: 10.1109/TAI.1992.246402
    • Vafaie, H. and K. De Jong, 1992. Genetic algorithms as a tool for feature selection in machine learning. Proceedings of the 4th International Conference on Tools with Artificial Intelligence, Nov. 10-13, Arlington, VA. USA., pp: 200-203. DOI: 10.1109/TAI.1992.246402
    • (1992) Proceedings of the 4th International Conference on Tools with Artificial Intelligence , pp. 200-203
    • Vafaie, H.1    De Jong, K.2
  • 77
    • 48749131093 scopus 로고    scopus 로고
    • Dialogue act tagging using smart feature selection: Results on multiple corpora
    • Dec. 10-13, IEEE Xplore Press, Palm Beach. DOI: 10.1109/SLT.2006.326819
    • Verbree, A.T., R.J. Rienks and D.K.J. Heylen, 2006. Dialogue act tagging using smart feature selection: Results on multiple corpora. Proceedings of the International IEEE Spoken Language Technology Workshop, Dec. 10-13, IEEE Xplore Press, Palm Beach, pp: 10-13. DOI: 10.1109/SLT.2006.326819
    • (2006) Proceedings of the International IEEE Spoken Language Technology Workshop , pp. 10-13
    • Verbree, A.T.1    Rienks, R.J.2    Heylen, D.K.J.3
  • 80
    • 2442705696 scopus 로고    scopus 로고
    • Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
    • 10.1016/j.ins.2003.03.019
    • William, H., 2004. Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning, Inform. Sci. Int. J., 163: 103-122. 10.1016/j.ins.2003.03.019
    • (2004) Inform. Sci. Int. J. , vol.163 , pp. 103-122
    • William, H.1
  • 83
    • 80053076692 scopus 로고    scopus 로고
    • Dynamic bayesian networks with ranking-based feature selection for dialogue act recognition
    • Nov. 3rd -5th, PWTC, Kuala Lumpur
    • Yahya, A.A., A.R. Ramli and T. Perumal, 2009. Dynamic bayesian networks with ranking-based feature selection for dialogue act recognition. Proceedings of the ATCi Advanced Technology Congress 2009, Nov. 3rd -5th, PWTC, Kuala Lumpur.
    • (2009) Proceedings of the ATCi Advanced Technology Congress 2009
    • Yahya, A.A.1    Ramli, A.R.2    Perumal, T.3
  • 84
    • 78049529960 scopus 로고    scopus 로고
    • An improved genetic algorithm for optimal feature subset selection from multi-character feature set
    • DOI: 10.1016/j.eswa.2010.08.063
    • Yang, A., D. Li and L. Zhu, 2011. An improved genetic algorithm for optimal feature subset selection from multi-character feature set. Expert Syst. Appl. Int. J., 38: 2733-2740. DOI: 10.1016/j.eswa.2010.08.063
    • (2011) Expert Syst. Appl. Int. J. , vol.38 , pp. 2733-2740
    • Yang, A.1    Li, D.2    Zhu, L.3
  • 85
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • DOI: 10.1109/5254.671091
    • Yang, J. and V. Honavar, 1998. Feature subset selection using a genetic algorithm. IEEE Intell. Syst., 13: 44-49. DOI: 10.1109/5254.671091
    • (1998) IEEE Intell. Syst. , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 86
    • 0141522840 scopus 로고    scopus 로고
    • GA-SVM wrapper approach for feature subset selection in keystroke dynamics identity verification
    • July 20-24, IEEE Xplore Press, DOI: 10.1109/IJCNN.2003.1223761
    • Yu, E. and S. Cho, 2003. GA-SVM wrapper approach for feature subset selection in keystroke dynamics identity verification. Proceedings of the IEEE International Joint Conference on Neural Networks, July 20-24, IEEE Xplore Press, pp: 2253-2257. DOI: 10.1109/IJCNN.2003.1223761
    • (2003) Proceedings of the IEEE International Joint Conference on Neural Networks , pp. 2253-2257
    • Yu, E.1    Cho, S.2
  • 87
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for highdimensional data: A fast correlation-based filter solution
    • AAAI Press, Washington, DC
    • Yu, L. and H. Liu, 2003. Feature selection for highdimensional data: A fast correlation-based filter solution. Proceedings of the International Conference on Machine Learning (ICML-03), AAAI Press, Washington, DC., pp: 856-863. http://www.aaai.org/Papers/ICML/2003/ICML03-111.pdf
    • (2003) Proceedings of the International Conference on Machine Learning (ICML-03) , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 88
    • 0034152374 scopus 로고    scopus 로고
    • Variable length representation in evolutionary electronics
    • DOI: 10.1162/106365600568112
    • Zebulum, R.S., M. Vellasco and M.A. Pacheco, 2000. Variable length representation in evolutionary electronics. Evol. Comput. J. 8: 93-120. DOI: 10.1162/106365600568112
    • (2000) Evol. Comput. J. , vol.8 , pp. 93-120
    • Zebulum, R.S.1    Vellasco, M.2    Pacheco, M.A.3
  • 89
    • 26944463069 scopus 로고    scopus 로고
    • An effective feature selection scheme via genetic algorithm using mutual information
    • DOI: 10.1007/11540007_10
    • Zhang, C.K. and H. Hu, 2005. An effective feature selection scheme via genetic algorithm using mutual information. Fuzzy Syst. Knowl. Discovery, 3614: 73-80. DOI: 10.1007/11540007_10
    • (2005) Fuzzy Syst. Knowl. Discovery , vol.3614 , pp. 73-80
    • Zhang, C.K.1    Hu, H.2
  • 90
    • 1542350353 scopus 로고    scopus 로고
    • A novel hybrid feature selection algorithm: Using ReliefF estimation for GA-Wrapper search
    • Nov. 2-5, IEEE Xplore Press, USA, DOI: 10.1109/ICMLC.2003.1264506
    • Zhang, L., J. Wang, Y. Zhao and Z. Yang, 2003. A novel hybrid feature selection algorithm: Using ReliefF estimation for GA-Wrapper search. Proceedings of IEEE International Conference on Machine Learning and Cybernetics. Nov. 2-5, IEEE Xplore Press, USA., pp: 380-384. DOI: 10.1109/ICMLC.2003.1264506
    • (2003) Proceedings of IEEE International Conference on Machine Learning and Cybernetics , pp. 380-384
    • Zhang, L.1    Wang, J.2    Zhao, Y.3    Yang, Z.4
  • 91
    • 10844273163 scopus 로고    scopus 로고
    • A neuralgenetic algorithm for feature selection and breast abnormality classification in digital mammography
    • DOI: 10.1109/IJCNN.2004.1380985
    • Zhang, P., B. Verma and K. Kumar, 2004. A neuralgenetic algorithm for feature selection and breast abnormality classification in digital mammography. IEEE, 3: 2303-2308. DOI: 10.1109/IJCNN.2004.1380985
    • (2004) IEEE , vol.3 , pp. 2303-2308
    • Zhang, P.1    Verma, B.2    Kumar, K.3
  • 92
    • 43149098046 scopus 로고    scopus 로고
    • Feature selection for high dimensional data in astronomy
    • DOI: 10.1016/J.ASR.2007.08.033
    • Zheng, H. and Y. Zhang, 2008. Feature selection for high dimensional data in astronomy. Adv. Space Res., 41: 1960-1964. DOI: 10.1016/J.ASR.2007.08.033
    • (2008) Adv. Space Res. , vol.41 , pp. 1960-1964
    • Zheng, H.1    Zhang, Y.2
  • 93
    • 62449095662 scopus 로고    scopus 로고
    • A genetic algorithm based wrapper feature selection method for classification of hyperspectral images using support vector machine
    • Zhuo, L., J. Zheng, F. Wang, X. Li and B. Ai et al., 2008. A genetic algorithm based wrapper feature selection method for classification of hyperspectral images using support vector machine. Remote Sens. Spatial Inform. Sci., 7147: 397-402. http://www.isprs.org/proceedings/XXXVII/congres s/7_pdf/3_WG-VII-3/32.pdf
    • (2008) Remote Sens. Spatial Inform. Sci. , vol.7147 , pp. 397-402
    • Zhuo, L.1    Zheng, J.2    Wang, F.3    Li, X.4    Ai, B.5
  • 94
    • 33750365224 scopus 로고    scopus 로고
    • Multi-population genetic algorithm for feature selection
    • DOI: 10.1007/11881223_59
    • Zhu, H., L. Jiao and J. Pan, 2006. Multi-population genetic algorithm for feature selection. Adv. Nat. Comput., 4222: 480-487. DOI: 10.1007/11881223_59
    • (2006) Adv. Nat. Comput. , vol.4222 , pp. 480-487
    • Zhu, H.1    Jiao, L.2    Pan, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.