메뉴 건너뛰기




Volumn 66, Issue 4, 2015, Pages 529-538

An evolutionary algorithm with the partial sequential forward floating search mutation for large-scale feature selection problems

Author keywords

evolutionary algorithm; feature selection; meta heuristics; partial SFFS

Indexed keywords

EVOLUTIONARY ALGORITHMS; GENES; GENETIC ALGORITHMS; HEURISTIC ALGORITHMS; LOCAL SEARCH (OPTIMIZATION);

EID: 84924532800     PISSN: 01605682     EISSN: 14769360     Source Type: Journal    
DOI: 10.1057/jors.2013.72     Document Type: Article
Times cited : (40)

References (34)
  • 3
    • 68149158363 scopus 로고    scopus 로고
    • A two stage classification procedure for near-infrared spectra based on multi-scale vertical energy wavelet thresholding and SVM-based gradient-recursive feature elimination
    • Cho H, Baek S, Youn E, Jeong M and Taylor A. (2009). A two stage classification procedure for near-infrared spectra based on multi-scale vertical energy wavelet thresholding and SVM-based gradient-recursive feature elimination. Journal of the Operational Research Society 60(8): 1107-1115
    • (2009) Journal of the Operational Research Society , vol.60 , Issue.8 , pp. 1107-1115
    • Cho, H.1    Baek, S.2    Youn, E.3    Jeong, M.4    Taylor, A.5
  • 4
    • 35048902042 scopus 로고    scopus 로고
    • Evolutionary search of thresholds for robust feature set selection: Application to the analysis of microarray data
    • Cotta C, Sloper C and Moscato P. (2004). Evolutionary search of thresholds for robust feature set selection: Application to the analysis of microarray data. Lecture Notes Computer Science 3005: 21-30
    • (2004) Lecture Notes Computer Science , vol.3005 , pp. 21-30
    • Cotta, C.1    Sloper, C.2    Moscato, P.3
  • 5
    • 79952566418 scopus 로고    scopus 로고
    • An evolutionary method for combining different feature selection criteria in microarray data classifications
    • article 3
    • Dessi N and Pes B. (2009). An evolutionary method for combining different feature selection criteria in microarray data classifications. Journal of Artificial Evolution and Applications 2009: article 3
    • (2009) Journal of Artificial Evolution and Applications , vol.2009
    • Dessi, N.1    Pes, B.2
  • 6
    • 34547477897 scopus 로고    scopus 로고
    • Band selection of hyperspectral images for automatic detection of poultry skin tumors
    • Du Z, Jeong MK and Kong S. (2007). Band selection of hyperspectral images for automatic detection of poultry skin tumors. IEEE Transactions on Automation Science and Engineering 4(3): 332-339
    • (2007) IEEE Transactions on Automation Science and Engineering , vol.4 , Issue.3 , pp. 332-339
    • Du, Z.1    Jeong, M.K.2    Kong, S.3
  • 7
    • 77950582430 scopus 로고    scopus 로고
    • Heuristics for feature selection in mathematical programming discriminant analysis models
    • Falangis K and Glen JJ. (2010). Heuristics for feature selection in mathematical programming discriminant analysis models. Journal of the Operational Research Society 61(5): 804-812
    • (2010) Journal of the Operational Research Society , vol.61 , Issue.5 , pp. 804-812
    • Falangis, K.1    Glen, J.J.2
  • 8
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science: Irvine, CA
    • Frank A and Asuncion A. (2010). UCI Machine Learning Repository. University of California, School of Information and Computer Science: Irvine, CA.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 10
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • Hong JH and Cho SB. (2006). Efficient huge-scale feature selection with speciated genetic algorithm. Pattern Recognition Letters 27(2): 143-150
    • (2006) Pattern Recognition Letters , vol.27 , Issue.2 , pp. 143-150
    • Hong, J.H.1    Cho, S.B.2
  • 13
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • Jirapech-Umpai T and Aitke S. (2005). Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes. BMC Bioinformatics 6: 148
    • (2005) BMC Bioinformatics , vol.6 , pp. 148
    • Jirapech-Umpai, T.1    Aitke, S.2
  • 15
    • 0000945761 scopus 로고    scopus 로고
    • A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines
    • Kim YK, Kim JY and Kim Y. (2000). A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines. Applied Intelligence 13(3): 247-258
    • (2000) Applied Intelligence , vol.13 , Issue.3 , pp. 247-258
    • Kim, Y.K.1    Kim, J.Y.2    Kim, Y.3
  • 16
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo Mand Sklansky J. 2000 Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 1 25-41
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 17
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: Simultaneous editing and feature selection
    • Kuncheva LI and Jain LC. (1999). Nearest neighbor classifier: Simultaneous editing and feature selection. Pattern Recognition Letters 20(11): 1149-1156
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 18
    • 24144432307 scopus 로고    scopus 로고
    • Data mining feature selection for credit scoring models
    • Liu Y and Schumann M. (2005). Data mining feature selection for credit scoring models. Journal of the Operational Research Society 56(9): 1099-1108
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1099-1108
    • Liu, Y.1    Schumann, M.2
  • 19
    • 31144448615 scopus 로고    scopus 로고
    • Using simulated annealing to optimize the feature selection problem in marketing applications
    • Meiri R and Zahavi J. (2006). Using simulated annealing to optimize the feature selection problem in marketing applications. European Journal of Operational Research 171(3): 842-858
    • (2006) European Journal of Operational Research , vol.171 , Issue.3 , pp. 842-858
    • Meiri, R.1    Zahavi, J.2
  • 20
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra PM and Fukunaga K. (1977). A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers 26(9): 917-922
    • (1977) IEEE Transactions on Computers , vol.26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 23
    • 67349161370 scopus 로고    scopus 로고
    • A variable selection method based on tabu search for logistic regression models
    • Pacheco J, Casado S and Nunez L. (2009). A variable selection method based on Tabu search for logistic regression models. European Journal of Operational Research 199(2): 506-511
    • (2009) European Journal of Operational Research , vol.199 , Issue.2 , pp. 506-511
    • Pacheco, J.1    Casado, S.2    Nunez, L.3
  • 24
    • 0000349989 scopus 로고    scopus 로고
    • Evolutionary consequences of coevolving targets
    • Pagie L and Hogeweg P. (1998). Evolutionary consequences of coevolving targets. Evolutionary Computation 5(4): 401-418
    • (1998) Evolutionary Computation , vol.5 , Issue.4 , pp. 401-418
    • Pagie, L.1    Hogeweg, P.2
  • 26
    • 84862146293 scopus 로고    scopus 로고
    • A two-leveled symbiotic evolutionary algorithm for clustering problems
    • Shin KS, Jeong YS and Jeong MK. (2012). A two-leveled symbiotic evolutionary algorithm for clustering problems. Applied Intelligence 36(4): 788-799
    • (2012) Applied Intelligence , vol.36 , Issue.4 , pp. 788-799
    • Shin, K.S.1    Jeong, Y.S.2    Jeong, M.K.3
  • 27
    • 0002526012 scopus 로고
    • 3rd International Conference on Pattern Recognition, Coronado, CA
    • Stearns SD. (1976). On selecting features for pattern classifiers. In: 3rd International Conference on Pattern Recognition, Coronado, CA, pp 71-75
    • (1976) On Selecting Features for Pattern Classifiers , pp. 71-75
    • Stearns, S.D.1
  • 29
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • Unler A andMurat A. (2010). A discrete particle swarm optimization method for feature selection in binary classification problems. European Journal of Operational Research 206(3): 528-539
    • (2010) European Journal of Operational Research , vol.206 , Issue.3 , pp. 528-539
    • Unler, A.1    Murat, A.2
  • 30
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J and Honavar V. (1998). Feature subset selection using a genetic algorithm. IEEE Intelligent Systems 13(2): 44-49
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 32
    • 78651568807 scopus 로고    scopus 로고
    • Support vector based feature selection using fisher's linear discriminant and support vector machine
    • Youn E, Koenig L, Jeong M and Baek S. (2010). Support vector based feature selection using Fisher's linear discriminant and support vector machine. Expert Systems with Applications 37(9): 6148-6156
    • (2010) Expert Systems with Applications , vol.37 , Issue.9 , pp. 6148-6156
    • Youn, E.1    Koenig, L.2    Jeong, M.3    Baek, S.4
  • 33
    • 0027610652 scopus 로고
    • A more efficient branch and bound algorithm for feature selection
    • Yu B and Yuan B. (1993). A more efficient branch and bound algorithm for feature selection. Pattern Recognition 26(6): 883-889
    • (1993) Pattern Recognition , vol.26 , Issue.6 , pp. 883-889
    • Yu, B.1    Yuan, B.2
  • 34
    • 60249087028 scopus 로고    scopus 로고
    • Different metaheuristic strategies to solve the feature selection problem
    • Yusta SC. (2009). Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters 30(5): 525-534
    • (2009) Pattern Recognition Letters , vol.30 , Issue.5 , pp. 525-534
    • Yusta, S.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.