-
1
-
-
85026775322
-
Recognizing sepsis as a global health priority-a WHO resolution
-
Reinhart K, Daniels R, Kissoon N, et al. Recognizing sepsis as a global health priority-a WHO resolution. N Engl J Med 2017;377:414-7.
-
(2017)
N Engl J Med
, vol.377
, pp. 414-417
-
-
Reinhart, K.1
Daniels, R.2
Kissoon, N.3
-
3
-
-
85031326158
-
Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014
-
Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA 2017;318:1241-9.
-
(2017)
JAMA
, vol.318
, pp. 1241-1249
-
-
Rhee, C.1
Dantes, R.2
Epstein, L.3
-
4
-
-
84903614329
-
Hospital deaths in patients with sepsis from 2 independent cohorts
-
Liu V, Escobar GJ, Greene JD, et al. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 2014;312:90-2.
-
(2014)
JAMA
, vol.312
, pp. 90-92
-
-
Liu, V.1
Escobar, G.J.2
Greene, J.D.3
-
5
-
-
85056577940
-
Epidemiology and costs of sepsis in the United States-An analysis based on timing of diagnosis and severity Level
-
Paoli CJ, Reynolds MA, Sinha M, et al. Epidemiology and costs of sepsis in the United States-An analysis based on timing of diagnosis and severity Level. Critical Care Medicine 2018;46:1889-97.
-
(2018)
Critical Care Medicine
, vol.46
, pp. 1889-1897
-
-
Paoli, C.J.1
Reynolds, M.A.2
Sinha, M.3
-
6
-
-
0034958947
-
Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
-
Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine 2001;29:1303-10.
-
(2001)
Critical Care Medicine
, vol.29
, pp. 1303-1310
-
-
Angus, D.C.1
Linde-Zwirble, W.T.2
Lidicker, J.3
-
7
-
-
84924366276
-
Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions
-
Prescott HC, Langa KM, Iwashyna TJ. Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. JAMA 2015;313:1055-7.
-
(2015)
JAMA
, vol.313
, pp. 1055-1057
-
-
Prescott, H.C.1
Langa, K.M.2
Iwashyna, T.J.3
-
8
-
-
84969961881
-
Late mortality after sepsis: Propensity matched cohort study
-
Prescott HC, Osterholzer JJ, Langa KM, et al. Late mortality after sepsis: propensity matched cohort study. BMJ 2016;353.
-
(2016)
BMJ
, vol.353
-
-
Prescott, H.C.1
Osterholzer, J.J.2
Langa, K.M.3
-
9
-
-
84876074082
-
Mortality and quality of life in the five years after severe sepsis
-
Cuthbertson BH, Elders A, Hall S, et al. Mortality and quality of life in the five years after severe sepsis. Crit Care 2013;17.
-
(2013)
Crit Care
, vol.17
-
-
Cuthbertson, B.H.1
Elders, A.2
Hall, S.3
-
10
-
-
84903837831
-
Increased 1-year healthcare use in survivors of severe sepsis
-
Prescott HC, Langa KM, Liu V, et al. Increased 1-year healthcare use in survivors of severe sepsis. Am J Respir Crit Care Med 2014;190:62-9.
-
(2014)
Am J Respir Crit Care Med
, vol.190
, pp. 62-69
-
-
Prescott, H.C.1
Langa, K.M.2
Liu, V.3
-
11
-
-
78049351929
-
Long-term cognitive impairment and functional disability among survivors of severe sepsis
-
Iwashyna TJ, Ely EW, Smith DM, et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010;304:1787-94.
-
(2010)
JAMA
, vol.304
, pp. 1787-1794
-
-
Iwashyna, T.J.1
Ely, E.W.2
Smith, D.M.3
-
13
-
-
85071345743
-
-
Sepsis alliance [Accessed 31 Mar 2019]
-
Sepsis alliance. Available: https://www. sepsis. org/ itsabouttime/ [Accessed 31 Mar 2019].
-
-
-
-
14
-
-
84930383716
-
Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: A systematic review
-
Makam AN, Nguyen OK, Auerbach AD. Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: a systematic review. J. Hosp. Med. 2015;10:396-402.
-
(2015)
J. Hosp. Med
, vol.10
, pp. 396-402
-
-
Makam, A.N.1
Nguyen, O.K.2
Auerbach, A.D.3
-
15
-
-
84959317195
-
Assessment of clinical criteria for sepsis: For the third International consensus definitions for sepsis and septic shock (Sepsis-3)
-
Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third International consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315:762-74.
-
(2016)
JAMA
, vol.315
, pp. 762-774
-
-
Seymour, C.W.1
Liu, V.X.2
Iwashyna, T.J.3
-
16
-
-
0026710191
-
Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis
-
Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992;101:1644-55.
-
(1992)
Chest
, vol.101
, pp. 1644-1655
-
-
Bone, R.C.1
Balk, R.A.2
Cerra, F.B.3
-
17
-
-
84928485055
-
Systemic inflammatory response syndrome criteria in defining severe sepsis
-
Kaukonen K-M, Bailey M, Pilcher D, et al. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med 2015;372:1629-38.
-
(2015)
N Engl J Med
, vol.372
, pp. 1629-1638
-
-
Kaukonen, K.-M.1
Bailey, M.2
Pilcher, D.3
-
18
-
-
0037389094
-
SCCM/ESICM/ACCP/ ATS/SIS international sepsis definitions conference
-
Levy MM, Fink MP, Marshall JC, et al. SCCM/ESICM/ACCP/ ATS/SIS international sepsis definitions conference. Crit Care Med 2001;2003:1250-6.
-
(2001)
Crit Care Med
, vol.2003
, pp. 1250-1256
-
-
Levy, M.M.1
Fink, M.P.2
Marshall, J.C.3
-
19
-
-
85025678654
-
Investigating the impact of different suspicion of infection criteria on the accuracy of quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning Scores
-
Churpek MM, Snyder A, Sokol S, et al. Investigating the impact of different suspicion of infection criteria on the accuracy of quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning Scores. Critical Care Medicine 2017;45:1805-12.
-
(2017)
Critical Care Medicine
, vol.45
, pp. 1805-1812
-
-
Churpek, M.M.1
Snyder, A.2
Sokol, S.3
-
20
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
Henry KE, Hager DN, Pronovost PJ, et al. A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med. 2015;7.
-
(2015)
Sci. Transl. Med
, vol.7
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
-
21
-
-
85017113914
-
Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
-
Horng S, Sontag DA, Halpern Y, et al. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS One 2017;12:e0174708.
-
(2017)
PLoS One
, vol.12
, pp. e0174708
-
-
Horng, S.1
Sontag, D.A.2
Halpern, Y.3
-
22
-
-
85051798815
-
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
-
Mao Q, Jay M, Hoffman JL, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open 2018;8:e017833.
-
(2018)
BMJ Open
, vol.8
, pp. e017833
-
-
Mao, Q.1
Jay, M.2
Hoffman, J.L.3
-
23
-
-
85029125816
-
Combining biomarkers with EMR data to identify patients in different phases of sepsis
-
Taneja I, Reddy B, Damhorst G, et al. Combining biomarkers with EMR data to identify patients in different phases of sepsis. Sci Rep 2017;7.
-
(2017)
Sci Rep
, vol.7
-
-
Taneja, I.1
Reddy, B.2
Damhorst, G.3
-
24
-
-
84960335394
-
Prediction of inhospital mortality in emergency department patients with sepsis: A local big data-driven, machine learning approach
-
Taylor RA, Pare JR, Venkatesh AK, et al. Prediction of inhospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med 2016;23:269-78.
-
(2016)
Acad Emerg Med
, vol.23
, pp. 269-278
-
-
Taylor, R.A.1
Pare, J.R.2
Venkatesh, A.K.3
-
26
-
-
85044927780
-
Big data and machine learning in health care
-
Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018;319:1317-8.
-
(2018)
JAMA
, vol.319
, pp. 1317-1318
-
-
Beam, A.L.1
Kohane, I.S.2
-
27
-
-
85021635595
-
Machine learning and prediction in medicine-beyond the peak of inflated expectations
-
Chen JH, Asch SM. Machine learning and prediction in medicine-beyond the peak of inflated expectations. N Engl J Med 2017;376:2507-9.
-
(2017)
N Engl J Med
, vol.376
, pp. 2507-2509
-
-
Chen, J.H.1
Asch, S.M.2
-
28
-
-
85031322889
-
Discrimination and calibration of clinical prediction models: Users' guides to the medical literature
-
Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA 2017;318:1377-84.
-
(2017)
JAMA
, vol.318
, pp. 1377-1384
-
-
Alba, A.C.1
Agoritsas, T.2
Walsh, M.3
-
29
-
-
84904856951
-
Accuracy of hospital standardized mortality rates: Effects of model calibration
-
Kipnis P, Liu V, Escobar GJ. Accuracy of hospital standardized mortality rates: effects of model calibration. Med Care 2014;52:378-84.
-
(2014)
Med Care
, vol.52
, pp. 378-384
-
-
Kipnis, P.1
Liu, V.2
Escobar, G.J.3
-
31
-
-
77949291292
-
Identifying the hospitalised patient in crisis"-A consensus conference on the afferent limb of Rapid Response Systems
-
DeVita MA, Smith GB, Adam SK, et al. "Identifying the hospitalised patient in crisis"-A consensus conference on the afferent limb of Rapid Response Systems. Resuscitation 2010;81:375-82.
-
(2010)
Resuscitation
, vol.81
, pp. 375-382
-
-
DeVita, M.A.1
Smith, G.B.2
Adam, S.K.3
-
32
-
-
85040255565
-
What this computer needs is a physician: Humanism and artificial intelligence
-
Verghese A, Shah NH, Harrington RA. What this computer needs is a physician: Humanism and artificial intelligence. JAMA 2018;319:19-20.
-
(2018)
JAMA
, vol.319
, pp. 19-20
-
-
Verghese, A.1
Shah, N.H.2
Harrington, R.A.3
-
33
-
-
84958692123
-
Integrating predictive analytics into high-value care: The dawn of precision delivery
-
Parikh RB, Kakad M, Bates DW. Integrating predictive analytics into high-value care: the dawn of precision delivery. JAMA 2016;315:651-2.
-
(2016)
JAMA
, vol.315
, pp. 651-652
-
-
Parikh, R.B.1
Kakad, M.2
Bates, D.W.3
-
34
-
-
44249118788
-
Improvement in process of care and outcome after a multicenter severe sepsis educational program in Spain
-
Ferrer R et al. Improvement in process of care and outcome after a multicenter severe sepsis educational program in Spain. JAMA 2008;299:2294-303.
-
(2008)
JAMA
, vol.299
, pp. 2294-2303
-
-
Ferrer, R.1
-
35
-
-
85009804040
-
Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016
-
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017;45:486-552.
-
(2017)
Crit Care Med
, vol.45
, pp. 486-552
-
-
Rhodes, A.1
Evans, L.E.2
Alhazzani, W.3
-
36
-
-
85020468010
-
Time to treatment and mortality during mandated emergency care for sepsis
-
Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med Overseas Ed 2017;376:2235-44.
-
(2017)
N Engl J Med Overseas Ed
, vol.376
, pp. 2235-2244
-
-
Seymour, C.W.1
Gesten, F.2
Prescott, H.C.3
-
37
-
-
84994107923
-
Data that drive: Closing the loop in the learning hospital system
-
Liu VX, Morehouse JW, Baker JM, et al. Data that drive: closing the loop in the learning hospital system. J Hosp Med 2016;11 Suppl 1:S11-S17.
-
(2016)
J Hosp Med
, vol.11
, pp. S11-S17
-
-
Liu, V.X.1
Morehouse, J.W.2
Baker, J.M.3
-
38
-
-
85014637868
-
Evaluating the impact of a computerized surveillance algorithm and decision support system on sepsis mortality
-
Manaktala S, Claypool SR. Evaluating the impact of a computerized surveillance algorithm and decision support system on sepsis mortality. J Am Med Inform Assoc 2017;24:88-95.
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 88-95
-
-
Manaktala, S.1
Claypool, S.R.2
-
39
-
-
85052147470
-
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial
-
Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Resp Res 2017;4:e000234.
-
(2017)
BMJ Open Resp Res
, vol.4
, pp. e000234
-
-
Shimabukuro, D.W.1
Barton, C.W.2
Feldman, M.D.3
-
40
-
-
85049017507
-
Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients
-
Warttig S, Alderson P, Evans DJW, et al. Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients. Cochrane Database Syst Rev 2018;181.
-
(2018)
Cochrane Database Syst Rev
, vol.181
-
-
Warttig, S.1
Alderson, P.2
Evans, D.J.W.3
-
41
-
-
84920272451
-
Development, implementation, and impact of an automated early warning and response system for sepsis
-
Umscheid CA, Betesh J, VanZandbergen C, et al. Development, implementation, and impact of an automated early warning and response system for sepsis. J. Hosp. Med. 2015;10:26-31.
-
(2015)
J. Hosp. Med
, vol.10
, pp. 26-31
-
-
Umscheid, C.A.1
Betesh, J.2
VanZandbergen, C.3
-
42
-
-
84939141387
-
An electronic tool for the evaluation and treatment of sepsis in the ICU: A randomized controlled trial
-
Semler MW, Weavind L, Hooper MH, et al. An electronic tool for the evaluation and treatment of sepsis in the ICU: a randomized controlled trial. Crit Care Med 2015;43:1595-602.
-
(2015)
Crit Care Med
, vol.43
, pp. 1595-1602
-
-
Semler, M.W.1
Weavind, L.2
Hooper, M.H.3
-
43
-
-
85062968085
-
Electronic health record-based clinical decision support alert for severe sepsis: A randomised evaluation
-
Downing NL, Rolnick J, Poole SF, et al. Electronic health record-based clinical decision support alert for severe sepsis: a randomised evaluation. BMJ Qual Saf 2019;28:762-8.
-
(2019)
BMJ Qual Saf
, vol.28
, pp. 762-768
-
-
Downing, N.L.1
Rolnick, J.2
Poole, S.F.3
-
44
-
-
84981316472
-
Validation of test performance and clinical time zero for an electronic health record embedded severe sepsis alert
-
Rolnick J, Downing NL, Shepard J, et al. Validation of test performance and clinical time zero for an electronic health record embedded severe sepsis alert. Appl Clin Inform 2016;7:560-72.
-
(2016)
Appl Clin Inform
, vol.7
, pp. 560-572
-
-
Rolnick, J.1
Downing, N.L.2
Shepard, J.3
-
45
-
-
84859865146
-
Why we still need randomized trials to compare effectiveness
-
Mauri L. Why we still need randomized trials to compare effectiveness. N Engl J Med 2012;366:1538-40.
-
(2012)
N Engl J Med
, vol.366
, pp. 1538-1540
-
-
Mauri, L.1
-
46
-
-
84940545085
-
Fusing randomized trials with big data: The key to self-learning health care systems
-
Angus DC. Fusing randomized trials with big data: the key to self-learning health care systems JAMA 2015;314:767-8.
-
(2015)
JAMA
, vol.314
, pp. 767-768
-
-
Angus, D.C.1
-
47
-
-
85021972547
-
Technologic Distractions (Part 1): Summary of approaches to manage alert quantity with intent to reduce alert fatigue and suggestions for alert fatigue metrics
-
Kane-Gill SL, O'Connor MF, Rothschild JM, et al. Technologic Distractions (Part 1): summary of approaches to manage alert quantity with intent to reduce alert fatigue and suggestions for alert fatigue metrics. Crit Care Med 2017;45:1481-8.
-
(2017)
Crit Care Med
, vol.45
, pp. 1481-1488
-
-
Kane-Gill, S.L.1
O'Connor, M.F.2
Rothschild, J.M.3
-
48
-
-
85008462865
-
Association between in-hospital critical illness events and outcomes in patients on the same ward
-
Volchenboum SL, Mayampurath A, Göksu-Gürsoy G, et al. Association between in-hospital critical illness events and outcomes in patients on the same ward. JAMA 2016;316:2674-5.
-
(2016)
JAMA
, vol.316
, pp. 2674-2675
-
-
Volchenboum, S.L.1
Mayampurath, A.2
Göksu-Gürsoy, G.3
|