메뉴 건너뛰기




Volumn 30, Issue 3, 2019, Pages 334-341

Selecting Optimal Subgroups for Treatment Using Many Covariates

Author keywords

Effect modification; Interaction; Optimal treatment selection; Personalized treatment; Precision medicine; Randomized trial; Subgroup

Indexed keywords

ARTICLE; COMPARATIVE STUDY; COST; HEALTH CARE PRACTICE; HEURISTICS; MATHEMATICAL COMPUTING; OBSERVATIONAL STUDY; PERSONALIZED MEDICINE; PREDICTIVE VALUE; PRIORITY JOURNAL; PROGNOSTIC ASSESSMENT; TREATMENT PLANNING; HUMAN; PATIENT SELECTION; RANDOMIZED CONTROLLED TRIAL (TOPIC);

EID: 85064722203     PISSN: 10443983     EISSN: 15315487     Source Type: Journal    
DOI: 10.1097/EDE.0000000000000991     Document Type: Article
Times cited : (72)

References (45)
  • 1
    • 0025737883 scopus 로고
    • Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials
    • Yusuf S Wittes J Probstfield J Tyroler HA. Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials. JAMA. 1991; 266: 93-98.
    • (1991) JAMA , vol.266 , pp. 93-98
    • Yusuf, S.1    Wittes, J.2    Probstfield, J.3    Tyroler, H.A.4
  • 2
    • 0034712491 scopus 로고    scopus 로고
    • Subgroup analysis and other (mis)uses of baseline data in clinical trials
    • Assmann SF Pocock SJ Enos LE Kasten LE. Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet. 2000; 355: 1064-1069.
    • (2000) Lancet , vol.355 , pp. 1064-1069
    • Assmann, S.F.1    Pocock, S.J.2    Enos, L.E.3    Kasten, L.E.4
  • 3
    • 0037108235 scopus 로고    scopus 로고
    • Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: Current practice and problems
    • Pocock SJ Assmann SE Enos LE Kasten LE. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med. 2002; 21: 2917-2930.
    • (2002) Stat Med , vol.21 , pp. 2917-2930
    • Pocock, S.J.1    Assmann, S.E.2    Enos, L.E.3    Kasten, L.E.4
  • 4
    • 0029023726 scopus 로고
    • Can overall results of clinical trials be applied to all patients?
    • Rothwell PM. Can overall results of clinical trials be applied to all patients? Lancet. 1995; 345: 1616-1619.
    • (1995) Lancet , vol.345 , pp. 1616-1619
    • Rothwell, P.M.1
  • 5
    • 33645895554 scopus 로고    scopus 로고
    • The challenge of subgroup analyses-reporting without distorting
    • Lagakos SW. The challenge of subgroup analyses-reporting without distorting. N Engl J Med. 2006; 354: 1667-1669.
    • (2006) N Engl J Med , vol.354 , pp. 1667-1669
    • Lagakos, S.W.1
  • 6
    • 36348939350 scopus 로고    scopus 로고
    • Statistics in medicine-reporting of subgroup analyses in clinical trials
    • Wang R Lagakos SW Ware JH Hunter DJ Drazen JM. Statistics in medicine-reporting of subgroup analyses in clinical trials. N Engl J Med. 2007; 357: 2189-2194.
    • (2007) N Engl J Med , vol.357 , pp. 2189-2194
    • Wang, R.1    Lagakos, S.W.2    Ware, J.H.3    Hunter, D.J.4    Drazen, J.M.5
  • 9
    • 0026702157 scopus 로고
    • Confidence interval estimation of interaction
    • Hosmer DW Lemeshow S. Confidence interval estimation of interaction. Epidemiology. 1992; 3: 452-456.
    • (1992) Epidemiology , vol.3 , pp. 452-456
    • Hosmer, D.W.1    Lemeshow, S.2
  • 10
    • 33847180224 scopus 로고    scopus 로고
    • Test for additive interaction in proportional hazards models
    • Li R Chambless L. Test for additive interaction in proportional hazards models. Ann Epidemiol. 2007; 17: 227-236.
    • (2007) Ann Epidemiol , vol.17 , pp. 227-236
    • Li, R.1    Chambless, L.2
  • 12
    • 0038107066 scopus 로고    scopus 로고
    • Optimal dynamic treatment regimes
    • Murphy SA. Optimal dynamic treatment regimes. J R Stat Soc Series B. 2003; 65: 331-336.
    • (2003) J R Stat Soc Series B , vol.65 , pp. 331-336
    • Murphy, S.A.1
  • 15
    • 33746523438 scopus 로고    scopus 로고
    • Multivariable risk prediction can greatly enhance the statistical power of clinical trial subgroup analysis
    • Hayward RA Kent DM Vijan S Hofer TP. Multivariable risk prediction can greatly enhance the statistical power of clinical trial subgroup analysis. BMC Med Res Methodol. 2006; 6: 18.
    • (2006) BMC Med Res Methodol , vol.6 , pp. 18
    • Hayward, R.A.1    Kent, D.M.2    Vijan, S.3    Hofer, T.P.4
  • 16
    • 34548575455 scopus 로고    scopus 로고
    • Limitations of applying summary results of clinical trials to individual patients: The need for risk stratification
    • Kent DM Hayward RA. Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA. 2007; 298: 1209-1212.
    • (2007) JAMA , vol.298 , pp. 1209-1212
    • Kent, D.M.1    Hayward, R.A.2
  • 17
    • 43249093045 scopus 로고    scopus 로고
    • More on subgroup analyses in clinical trials
    • author reply 2076-2077
    • Pocock SJ Lubsen J. More on subgroup analyses in clinical trials. N Engl J Med. 2008; 358: 2076; author reply 2076-2077.
    • (2008) N Engl J Med , vol.358 , pp. 2076
    • Pocock, S.J.1    Lubsen, J.2
  • 19
    • 0037159557 scopus 로고    scopus 로고
    • An independently derived and validated predictive model for selecting patients with myocardial infarction who are likely to benefit from tissue plasminogen activator compared with streptokinase
    • Kent DM Hayward RA Griffith JL. An independently derived and validated predictive model for selecting patients with myocardial infarction who are likely to benefit from tissue plasminogen activator compared with streptokinase. Am J Med. 2002; 113: 104-111.
    • (2002) Am J Med , vol.113 , pp. 104-111
    • Kent, D.M.1    Hayward, R.A.2    Griffith, J.L.3
  • 20
    • 24644469197 scopus 로고    scopus 로고
    • 5-year outcome of an interventional strategy in non-ST-elevation acute coronary syndrome: The British Heart Foundation RITA 3 randomised trial
    • Fox KA Poole-Wilson P Clayton TC. 5-year outcome of an interventional strategy in non-ST-elevation acute coronary syndrome: the British Heart Foundation RITA 3 randomised trial. Lancet. 2005; 366: 914-920.
    • (2005) Lancet , vol.366 , pp. 914-920
    • Fox, K.A.1    Poole-Wilson, P.2    Clayton, T.C.3
  • 21
    • 11844302840 scopus 로고    scopus 로고
    • Subgroup analysis in randomised controlled trials: Importance, indications, and interpretation
    • Rothwell PM. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet 2005; 365: 176-186.
    • (2005) Lancet , vol.365 , pp. 176-186
    • Rothwell, P.M.1
  • 23
    • 0038037390 scopus 로고    scopus 로고
    • Subgroup analysis in social experiments: Measuring program impacts based on post-treatment choice
    • Peck LR. Subgroup analysis in social experiments: measuring program impacts based on post-treatment choice. Am J Eval. 2003; 24: 157-187.
    • (2003) Am J Eval , vol.24 , pp. 157-187
    • Peck, L.R.1
  • 24
    • 44849091245 scopus 로고    scopus 로고
    • The prognostic analogue of the propensity score
    • Hansen BB. The prognostic analogue of the propensity score. Biometrika 2008; 95: 481-488.
    • (2008) Biometrika , vol.95 , pp. 481-488
    • Hansen, B.B.1
  • 25
    • 79953133534 scopus 로고    scopus 로고
    • Analysis of randomized comparative clinical trial data for personalized treatment selections
    • Cai T Tian L Wong PH Wei LJ. Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics. 2011; 12: 270-282.
    • (2011) Biostatistics , vol.12 , pp. 270-282
    • Cai, T.1    Tian, L.2    Wong, P.H.3    Wei, L.J.4
  • 26
    • 84890112672 scopus 로고    scopus 로고
    • Effectively selecting a target population for a future comparative study
    • Zhao L Tian L Cai T Claggett B Wei LJ. Effectively selecting a target population for a future comparative study. J Am Stat Assoc. 2013; 108: 527-539.
    • (2013) J Am Stat Assoc , vol.108 , pp. 527-539
    • Zhao, L.1    Tian, L.2    Cai, T.3    Claggett, B.4    Wei, L.J.5
  • 27
    • 84963667892 scopus 로고    scopus 로고
    • Targeted learning of the mean outcome under an optimal dynamic treatment rule
    • Luedtke AR van der Laan MJ. Targeted learning of the mean outcome under an optimal dynamic treatment rule. J Causal Inference. 2015; 3: 61-95.
    • (2015) J Causal Inference , vol.3 , pp. 61-95
    • Luedtke, A.R.1    Van Der Laan, M.J.2
  • 28
    • 84963665173 scopus 로고    scopus 로고
    • Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy
    • Luedtke AR van der Laan MJ. Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. Ann Stat. 2016; 44: 713-742.
    • (2016) Ann Stat , vol.44 , pp. 713-742
    • Luedtke, A.R.1    Van Der Laan, M.J.2
  • 29
    • 84975256229 scopus 로고    scopus 로고
    • Optimal dynamic treatments in resource-limited settings
    • Luedtke AR van der Laan MJ. Optimal dynamic treatments in resource-limited settings. Int J Biostat. 2016; 12: 283-303.
    • (2016) Int J Biostat , vol.12 , pp. 283-303
    • Luedtke, A.R.1    Van Der Laan, M.J.2
  • 30
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and non-randomized studies
    • Rubin D. Estimating causal effects of treatments in randomized and non-randomized studies. J. Edu Psychol. 1974; 66: 688-701.
    • (1974) J. Edu Psychol , vol.66 , pp. 688-701
    • Rubin, D.1
  • 32
    • 0022072706 scopus 로고
    • Testing for qualitative interactions between treatment effects and patient subsets
    • Gail M Simon R. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics. 1985; 41: 361-372.
    • (1985) Biometrics , vol.41 , pp. 361-372
    • Gail, M.1    Simon, R.2
  • 33
    • 0027198279 scopus 로고
    • A comparison of the power of two tests for qualitative interactions
    • Piantadosi S Gail MH. A comparison of the power of two tests for qualitative interactions. Stat Med. 1993; 12: 1239-1248.
    • (1993) Stat Med , vol.12 , pp. 1239-1248
    • Piantadosi, S.1    Gail, M.H.2
  • 34
    • 0031591631 scopus 로고    scopus 로고
    • Test for qualitative interaction of clinical significance
    • Pan G Wolfe DA. Test for qualitative interaction of clinical significance. Stat Med. 1997; 16: 1645-1652.
    • (1997) Stat Med , vol.16 , pp. 1645-1652
    • Pan, G.1    Wolfe, D.A.2
  • 35
    • 0035184670 scopus 로고    scopus 로고
    • Tests against qualitative interaction: Exact critical values and robust tests
    • Silvapulle MJ. Tests against qualitative interaction: exact critical values and robust tests. Biometrics. 2001; 57: 1157-1165.
    • (2001) Biometrics , vol.57 , pp. 1157-1165
    • Silvapulle, M.J.1
  • 36
    • 33751072926 scopus 로고    scopus 로고
    • Detecting qualitative interactions in clinical trials: An extension of range test
    • Li J Chan IS. Detecting qualitative interactions in clinical trials: an extension of range test. J Biopharm Stat. 2006; 16: 831-841.
    • (2006) J Biopharm Stat , vol.16 , pp. 831-841
    • Li, J.1    Chan, I.S.2
  • 37
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • Moore JH Gilbert JC Tsai CT. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol. 2006; 241: 252-261.
    • (2006) J Theor Biol , vol.241 , pp. 252-261
    • Moore, J.H.1    Gilbert, J.C.2    Tsai, C.T.3
  • 38
    • 84867424852 scopus 로고    scopus 로고
    • Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees
    • Green DP Kern HL. Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees. Public Opin Q. 2012: 76: 491-511.
    • (2012) Public Opin Q , vol.76 , pp. 491-511
    • Green, D.P.1    Kern, H.L.2
  • 39
    • 84876042107 scopus 로고    scopus 로고
    • Estimating treatment effect heterogeneity in randomized program evaluation
    • Imai K Ratkovic M. Estimating treatment effect heterogeneity in randomized program evaluation. Ann Appl Stat. 2013; 7: 443-470.
    • (2013) Ann Appl Stat , vol.7 , pp. 443-470
    • Imai, K.1    Ratkovic, M.2
  • 40
    • 84891759350 scopus 로고    scopus 로고
    • A Bayesian approach to subgroup identification
    • Berger JO Wang X Shen L. A Bayesian approach to subgroup identification. J Biopharm Stat. 2015; 24: 110-129.
    • (2015) J Biopharm Stat , vol.24 , pp. 110-129
    • Berger, J.O.1    Wang, X.2    Shen, L.3
  • 41
    • 34247236793 scopus 로고    scopus 로고
    • The identification of synergism in the sufficient-component-cause framework
    • VanderWeele TJ Robins JM. The identification of synergism in the sufficient-component-cause framework. Epidemiology. 2007; 18: 329-339.
    • (2007) Epidemiology , vol.18 , pp. 329-339
    • VanderWeele, T.J.1    Robins, J.M.2
  • 42
    • 73849140389 scopus 로고    scopus 로고
    • On the distinction between interaction and effect modification
    • VanderWeele TJ. On the distinction between interaction and effect modification. Epidemiology. 2009; 20: 863-871.
    • (2009) Epidemiology , vol.20 , pp. 863-871
    • VanderWeele, T.J.1
  • 44
    • 79956351213 scopus 로고    scopus 로고
    • Interpretation of subgroup analyses in randomized trials: Heterogeneity versus secondary interventions
    • VanderWeele TJ Knol MJ. Interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions. Ann Intern Med. 2011; 154: 680-683.
    • (2011) Ann Intern Med , vol.154 , pp. 680-683
    • VanderWeele, T.J.1    Knol, M.J.2
  • 45
    • 84963667892 scopus 로고    scopus 로고
    • Targeted learning of the mean outcome under an optimal dynamic treatment rule
    • van der Laan MJ Luedtke AR. Targeted learning of the mean outcome under an optimal dynamic treatment rule. J Causal Inference. 2014; 3: 61-95.
    • (2014) J Causal Inference , vol.3 , pp. 61-95
    • Van Der Laan, M.J.1    Luedtke, A.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.